

Aurora's pg college Moosarambagh Mca department

MCA II/II SEM

Data Mining Lab Manual

Index

S.No	Experiment	Page no	Signature
1.	Demonstration of preprocessing on dataset student.arff		
2.	Demonstration of preprocessing on dataset labor.arff		
3.	Demonstration of Association rule process on dataset contactlenses.arff using apriori algorithm		
4.	Demonstration of Association rule process on dataset test.arff using apriori algorithm		
5.	Demonstration of classification rule process on dataset student.arff using j48 Algorithm		
6.	Demonstration of classification rule process on dataset employee.arff using j48 algorithm		
7.	Demonstration of classification rule process on dataset employee.arff using id3 algorithm		
8.	Demonstration of classification rule process on dataset employee.arff using naïve bayes algorithm		
9.	Demonstration of clustering rule process on dataset iris.arff using simple k-means		
10.	Demonstration of clustering rule process on dataset student.arff using simple k- means		

<u>1. Demonstration of preprocessing on dataset student.arff</u>

<u>Aim:</u> This experiment illustrates some of the basic data preprocessing operations that can be performed using WEKA-Explorer. The sample dataset used for this example is the student data available in arff format.

Step1: Loading the data. We can load the dataset into weka by clicking on open button in preprocessing interface and selecting the appropriate file.

Step2: Once the data is loaded, weka will recognize the attributes and during the scan of the data weka will compute some basic strategies on each attribute. The left panel in the above figure shows the list of recognized attributes while the top panel indicates the names of the base relation or table and the current working relation (which are same initially).

Step3:Clicking on an attribute in the left panel will show the basic statistics on the attributes for the categorical attributes the frequency of each attribute value is shown, while for continuous attributes we can obtain min, max, mean, standard deviation and deviation etc.,

Step4:The visualization in the right button panel in the form of cross-tabulation across two attributes.

Note:we can select another attribute using the dropdown list.

Step5:Selecting or filtering attributes

<u>Removing an attribute</u>-When we need to remove an attribute, we can do this by using the attribute filters in weka. In the filter model panel, click on choose button, This will show a popup window with a list of available filters.

Scroll down the list and select the "weka.filters.unsupervised.attribute.remove" filters.

Step 6:a)Next click the textbox immediately to the right of the choose button. In the resulting dialog box enter the index of the attribute to be filtered out.

b)Make sure that invert selection option is set to false.The click OK now in the filter box.you will see "Remove-R-7".

c)Click the apply button to apply filter to this data.This will remove the attribute and create new working relation.

d)Save the new working relation as an arff file by clicking save button on the top(button)panel.(student.arff)

Discretization

1)Sometimes association rule mining can only be performed on categorical data. This requires performing discretization on numeric or continuous attributes. In the following example let us discretize age attribute.

[®]Let us divide the values of age attribute into three bins(intervals).

@First load the dataset into weka(student.arff)

[©]Select the age attribute.

[®]To change the defaults for the filters, click on the box immediately to the right of the choose button.

[®]We enter the index for the attribute to be discretized.In this case the attribute is age.So we must enter '1' corresponding to the age attribute.

[®]Enter '3' as the number of bins.Leave the remaining field values as they are.

Output OK button.

©Click apply in the filter panel. This will result in a new working relation with the selected attribute partition into 3 bins.

[®]Save the new working relation in a file called student-data-discretized.arff

Dataset student .arff

@relation student

@attribute age {<30,30-40,>40}

@attribute income {low, medium, high}

@attribute student {yes, no}

@attribute credit-rating {fair, excellent}

@attribute buyspc {yes, no}

@data

%

<30, high, no, fair, no <30, high, no, excellent, no 30-40, high, no, fair, yes >40, medium, no, fair, yes >40, low, yes, fair, yes >40, low, yes, excellent, no 30-40, low, yes, excellent, yes <30, medium, no, fair, no <30, low, yes, fair, no >40, medium, yes, fair, yes <30, medium, no, excellent, yes 30-40, medium, no, excellent, yes 30-40, high, yes, fair, yes >40, medium, no, excellent, no % The following screenshot shows the effect of discretization.

🏷 Weka Explorer	
Preprocess Classify Cluster Associate Select attributes Visualize	
Open file Open URL Open DB Gen	nerate Undo Edit Save
Filter	
Choose Discretize -B 10 -M -1.0 -R first-last	Apply
Current relation	Selected attribute
Relation: tbuk-weka.filters.unsupervised.attribute.Discretize-B10-M-1.0-Rfirst-last-weka.filter Instances: 14 Attributes: 5	Name: Student Type: Nominal Missing: 0 (0%) Distinct: 2 Unique: 0 (0%)
Attributes	No. Label Count
All None Invert Pattern	1 yes 7 2 no 7
No. Name	
1 🔽 age	
2 Vincome 3 Vistudent	
4 creditrating 5 buyspc	
	-
	Class: age (Nom) Visualize All
	7 7
Remove	
Status OK	Log 💉 ×0
🔠 start 🔷 Weka GUI Chooser 🔗 Weka Explorer 📄 ALEKHYA	A (G:) 🚺 tbuk - Notepad 😵 1:52 PM

2. Demonstration of preprocessing on dataset labor.arff

<u>Aim</u>: This experiment illustrates some of the basic data preprocessing operations that can be performed using WEKA-Explorer. The sample dataset used for this example is the labor data available in arff format.

Step1:Loading the data. We can load the dataset into weka by clicking on open button in preprocessing interface and selecting the appropriate file.

Step2:Once the data is loaded, weka will recognize the attributes and during the scan of the data weka will compute some basic strategies on each attribute. The left panel in the above figure shows the list of recognized attributes while the top panel indicates the names of the base relation or table and the current working relation (which are same initially).

Step3:Clicking on an attribute in the left panel will show the basic statistics on the attributes for the categorical attributes the frequency of each attribute value is shown, while for continuous attributes we can obtain min, max, mean, standard deviation and deviation etc.,

Step4:The visualization in the right button panel in the form of cross-tabulation across two attributes.

Note:we can select another attribute using the dropdown list.

Step5:Selecting or filtering attributes

<u>Removing an attribute</u>-When we need to remove an attribute, we can do this by using the attribute filters in weka. In the filter model panel, click on choose button, This will show a popup window with a list of available filters.

Scroll down the list and select the "weka.filters.unsupervised.attribute.remove" filters.

Step 6:a)Next click the textbox immediately to the right of the choose button.In the resulting dialog box enter the index of the attribute to be filtered out.

b)Make sure that invert selection option is set to false.The click OK now in the filter box.you will see "Remove-R-7".

c)Click the apply button to apply filter to this data.This will remove the attribute and create new working relation.

d)Save the new working relation as an arff file by clicking save button on the top(button)panel.(labor.arff)

Discretization

1) Sometimes association rule mining can only be performed on categorical data. This requires performing discretization on numeric or continuous attributes. In the following example let us discretize duration attribute.

[®]Let us divide the values of duration attribute into three bins(intervals).

@First load the dataset into weka(labor.arff)

[®]Select the duration attribute.

[®]To change the defaults for the filters, click on the box immediately to the right of the choose button.

[®]We enter the index for the attribute to be discretized.In this case the attribute is duration So we must enter '1' corresponding to the duration attribute.

©Enter '1' as the number of bins.Leave the remaining field values as they are.

@Click OK button.

©Click apply in the filter panel. This will result in a new working relation with the selected attribute partition into 1 bin.

[®]Save the new working relation in a file called labor-data-discretized.arff

Dataset labor.arff

	🛃 V	iewer									
	Relati	on: labor-n	eo-data								
My Documents	No.	duration Numeric		wage-increase-second-year Numeric	wage-increase-third-year Numeric	cost-of-living-adjustment Nominal	working-hours Numeric	pension Nominal	standby-pay Numeric	shift-differential Numeric	edu
-	1	1.0	5.0				40.0		1	2.0	2
	2	2.0	4.5	5.8			35.0	ret_allw	1		yes
	3						38.0	empl_c	1	5.0	C
My Computer	4	3.0	3.7	4.0	5.0	tc		0	1		yes
	5	3.0	4.5	4.5	5.0		40.0	1	1		
	6	2.0	2.0	2.5			35.0	1	1	6.0	D yes
1	7	3.0	4.0	5.0	5.0	tc		empl_c	1		1
	8	3.0	6.9	4.8	2.3		40.0	0]	3.0)
Recycle Bin	9	2.0	3.0	7.0			38.0	1	12.0	25.0	D yes
	10	1.0	5.7			none	40.0	empl_c	[4.0	
	11	3.0	3.5	4.0	4.6	none	36.0		1	3.0	
1	12	2.0	6.4	6.4			38.0	1	1	4.0	2
	13	2.0	3.5			none	40.0	1	1	2.0	Dino
New Folder	14	3.0	3.5	4.0	5.1	tcf	37.0		1	4.0	ו
	15	1.0	3.0			none	36.0	1	1	10.0) no
	16	2.0	4.5	4.0		none	37.0	empl_c	1		1
2	17	1.0	2.8				35.0]	2.0)
	18	1.0	2.1			tc		ret_allw	2.0	3.0	Dino
th program	19	1.0	2.0			none		none			yes
	20	2.0	4.0	5.0		tcf	35.0		13.0	5.0	נ
	21	2.0	4.3	4.4			38.0]	1	4.0	2
- Ch.	22	2.0	2.5	3.0			40.0	none	1		1
N.	23	3.0	3.5	4.0	4.6	tcf	27.0		1		1
abc	24	2.0	4.5	4.0			40.0			4.0)
	25	1.0	6.0				38.0	1	8.0	3.0)
	26	3.0	2.0	2.0	2.0	none	40.0	none			
0	27	2.0	4.5	4.5		tcf			1		yes
	28	2.0	3.0	3.0		none	33.0	1	1		yes
apriori alg	29	2.0	5.0	4.0		none	37.0	1	1	5.0	Dino
	30	3.0	2.0	2.5				none	1		
	31	3.0	4.5	4.5		none	40.0		1		no
	32	3.0	3.0	2.0		hr ha far an	40.0	none	1	5.0	Dino
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33	2.0	2.5	2.5	Terraria and the second	alt) for context menu		empl_c			
ass test1	34	2.0	4.0	5.0		none	40.0	none		3.0	Dino
	35	3.0	2.0	2.5		tc		none	2.0	1.0	Dino
	36	2.0	2.0	2.0		none		none		1	no
	37	1.0	2.0			tc	40.0	ret_allw	4.0	0.0	Dino
5	38	1.0	2.8			none	38.0	empl_c	2.0	3.0	Dino
ass test2	<	·		The second se			107. 	SAL PARE			20
										Undo Ok	K
👭 start	- 44	start	🐦 Weka GUI Choo	ser 🔷 🐟 Weka Explor	e water	Ilassifier Tree 🏾 🍟 p	rep labor - Paint			10.5	

The following screenshot shows the effect of discretization

📚 Weka Explorer	
Preprocess Classify Cluster Associate Select attributes Visualize	
Open file, Open URL Open DB Gen	erate Undo Edit Save
Filter	
Choose Discretize -B 10 -M -1.0 -R first-last	Apply
Current relation	Selected attribute
Relation: labor-neg-data-weka.filters.unsupervised.attribute.Discretize-B10-M-1.0-Rfirst-last	Name: duration Type: Nominal
Instances: 57 Attributes: 17	Missing: 1 (2%) Distinct: 3 Unique: 0 (0%)
Attributes	No. Label Count
All None Invert Pattern	1 ['(-inf-1.2]" 10 2 ['(1.2-1.4]" 0
	3 '(1.4-1.6]' 0
No. Name	4 '(1.6-1.8]' 0
1 duration	5 '(1.8-2]' 27
2 wage-increase-first-year	6 '(2-2,2]' 0
3 wage-increase-second-year	7 '(2.2-2.4]' 0
4 wage-increase-third-year	8 '(2.4-2.6]' 0
5 cost-of-living-adjustment	9 '(2.6-2.8]' 0
6 working-hours	10 '(2.8-inf)' 19
7 pension	
8 standby-pay	
9 shift-differential	Class: class (Nom) Visualize All
10 ducation-allowance	
11 statutory-holidays	27
12 vacation	
13 longterm-disability-assistance	
14 contribution-to-dental-plan	
15 bereavement-assistance 16 contribution-to-health-plan	19
17 class	
Remove	
Status OK	Log 💉 X O
🖅 start 💿 Weka GUI Chooser 📀 Weka Explorer 🚺 tbuk - No	tepad 1:58 PM

3. Demonstration of Association rule process on dataset contactlenses.arff using apriori algorithm

<u>Aim:</u> This experiment illustrates some of the basic elements of association rule mining using WEKA. The sample dataset used for this example is contactlenses.arff

Step1: Open the data file in Weka Explorer. It is presumed that the required data fields have been discretized. In this example it is age attribute.

Step2: Clicking on the associate tab will bring up the interface for association rule algorithm.

Step3: We will use apriori algorithm. This is the default algorithm.

Step4: Inorder to change the parameters for the run (example support, confidence etc) we click on the text box immediately to the right of the choose button.

Dataset contactlenses.arff

	-	/iewer											
_	Relati	ion: conta	act-lenses			100							
My Documents	No.	age Nominal	spectacle-prescrip Nominal	astigmatism Nominal	tear-prod-rate Nominal	contact-lenses		Senera	ate	Undo	Edit		Savi
	1	young	myope	no	reduced	none		acricic					
	2	young	myope	no	normal	soft							
0	3	young	myope	yes	reduced	none							
My Computer	4	Young	myope	yes	normal	hard							
	5	young	hypermetrope	no	reduced	none							
1.1.1	6	young	hypermetrope	no	normal	soft			Selected a	attribute			
	7	young	hypermetrope	yes	reduced	none			Name:	age			ype: Nominal
1	8	young	hypermetrope	ves	normal	hard			Missing:	0 (0%) Dis	tinct: 3	Unic	que: 0 (0%)
Recycle Bin	9	pre-pr	1.2.2	no	reduced	none			No.	Label	1	Iount	
	10	pre-pr	1.00 10	no	normal	soft			and the book	1 young	8		
	11	pre-pr	1.	yes	reduced	none	- F			2 pre-presbyopic	8		
0	12	pre-pr	1.00	yes	normal	hard					8		
	13		hypermetrope	no	reduced	none		-	-	3 presbyopic	0		
New Folder	14		hypermetrope	no	normal	soft							
	15		hypermetrope	yes	reduced	none							
	16		hypermetrope	yes	normal	none							
-	17	presb		no	reduced	none							
	18	presb	1.000 100	no	normal	none							
d the program	19	presb		yes	reduced	none							
4 th program	20	presb		yes	normal	hard							
	20	presb		no	reduced	none							
100000	22	presb		no	normal	soft			-	MARK MARK			
	23		hypermetrope	ves	reduced	none			Class: cont-	act-lenses (Nom)			~
	23		hypermetrope	yes yes	normal	none							
abc		present	[i]penies ope	1/00	Und		ancel		8				8
apriori alg													
ss test 1													
	Stat			Ŗ	emove								
ass test2	OK												Log
🦺 start	1	start	🔷 🐦 Weka G	UI Chooser	💎 Weka	Explorer	🛃 Weka	Classi	fier Tree	🍟 labor dataset - Paint	C ALEKH	YA (G:)	

The following screenshot shows the association rules that were generated when apriori algorithm is applied on the given dataset.

<u></u>	Weka Explorer	000
Preprocess Classify Cluster Associate Select attributes	Visualize	
Clusterer		
Choose SimpleKMeans -N 2 -5 10		
Cluster mode	Clusterer output	
⊙ Use training set		
Constant test act	=== Run information ===	
	Weka Explorer	000
Preprocess Classify Cluster Associate Select attributes	Visualize	
Associator		
Choose Apriori -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0	.1-5-1.0	J
Start Stop Associator output		
Result list (right-click for === Run information ==	• • • • • • • • • • • • • • • • • • •	
	sociations.Apriori -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0	
Relation: contact- Instances: 24	-lenses	
Attributes: 5		
age		
spectac. astignat	le-prescrip	
tear-pro		
contact-		
=== Associator model	(full training set) ===	
Apriori		
Minimum support: 0.2	(5 instances)	
Minimum metric <confid< th=""><th></th><th></th></confid<>		
Number of cycles perfo	ormed: 16	
Generated sets of larg	ge itemsets:	
Size of set of large :	itemasta [/]]+]]	
Size of Sec of large .		
Size of set of large :	itemsets L(2): 21	
Size of set of large :	itemsets L(3): 6	

<u>\$</u>	Weka Explorer	00(
Preprocess Classify Clus	Uster Associate Select attributes Visualize	
Clusterer		
Choose SimpleKN	(Means -N 2 - 5 10	
Cluster mode	Clusterer output	
	Clusterer output	
 Use training set 	=== Run information ===	
Cumplied test est	Con Weka Explorer	
TTO /		00
state state state of	luster Associate Select attributes Visualize	
Associator		
Choose Apriori -N	-N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0	
Start Stop	~Associator output:	
Result list (right-click for	contact-lenses	
	=== Associator model (full training set) ===	
12:09:06 - Apriori		
	hand with the second	
	Apriori	
	Minimum support: 0.2 (5 instances)	
	Minimum metric <confidence>: 0.9</confidence>	
	Number of cycles performed: 16	
	Commented with the formation	
	Generated sets of large itemsets:	
	Size of set of large itemsets L(1); 11	
	Size of set of large itemsets L(2): 21	
	Size of set of large itemsets L(3): 6	
	Best rules found:	
	1. tear-prod-rate=reduced 12 ==> contact-lenses=none 12 conf:(1)	
	 astigmatism=yes tear-prod-rate=reduced 6 ==> contact-lenses=none 6 conf: (1) 	
	3. astigmatism=no tear-prod-rate=reduced 6 ==> contact-lenses=none 6 conf:(1)	
	4. spectacle-prescrip=hypermetrope tear-prod-rate=reduced 6 ==> contact-lenses=none 6 conf:(1)	
	5. spectacle-prescrip=myope tear-prod-rate=reduced 6 ==> contact-lenses=none 6 conf:(1) 6. contact-lenses=soft 5 ==> astigmatism=no tear-prod-rate=normal 5 conf:(1)	
	b. contact-lenses=sort 5 ==> astigmatism=no tear-prod-rate=normal 5 conr: (1) 7. astigmatism=no contact-lenses=soft 5 ==> tear-prod-rate=normal 5 conf: (1)	
	3. tariyanti-and contact-lenses-oft 5 => artigratima- 5 conf:(1)	

8. tear-prod-rate=normal contact-lenses=soft 5 ==> astigmatism=no 5 conf:(1)

4. Demonstration of Association rule process on dataset test.arff using apriori algorithm

<u>Aim:</u> This experiment illustrates some of the basic elements of association rule mining using WEKA. The sample dataset used for this example is test.arff

Step1: Open the data file in Weka Explorer. It is presumed that the required data fields have been discretized. In this example it is age attribute.

Step2: Clicking on the associate tab will bring up the interface for association rule algorithm.

Step3: We will use apriori algorithm. This is the default algorithm.

Step4: Inorder to change the parameters for the run (example support, confidence etc) we click on the text box immediately to the right of the choose button.

Dataset test.arff

@relation test

@attribute admissionyear {2005,2006,2007,2008,2009,2010}

@attribute course {cse,mech,it,ece}

@data

%

2005, cse

2005, it

2005, cse

2006, mech

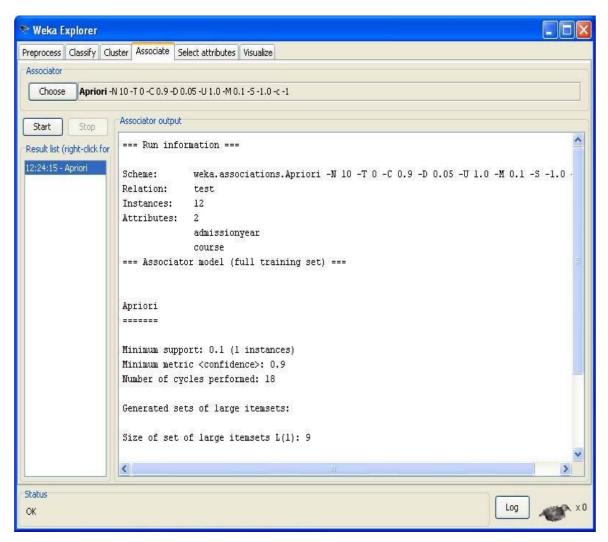
2006, it

2006, ece

2007, it

2007, cse

2008, it


2008, cse

2009, it

2009, ece

%

The following screenshot shows the association rules that were generated when apriori algorithm is applied on the given dataset.

🔊 Weka Explorer		
Preprocess Classify Clu	ster Associate Select attributes Visualize	
Associator		
Choose Apriori -	I 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0 -с -1	
Start Stop	Associator output	
Result list (right-click for 12:24:15 - Apriori	course === Associator model (full training set) ===	~
	Apriori ======	
	Minimum support: 0.1 (1 instances) Minimum metric <confidence>: 0.9 Number of cycles performed: 18</confidence>	
	Generated sets of large itemsets:	
	Size of set of large itemsets L(1): 9 Size of set of large itemsets L(2): 11	3
	Best rules found:	
	<pre>1. course=mech 1 ==> admissionyear=2006 l conf:(1)</pre>	
<u></u>		
Status OK		Log 💉 ×0

5. Demonstration of classification rule process on dataset student.arff using j48 algorithm

<u>Aim:</u> This experiment illustrates the use of j-48 classifier in weka. The sample data set used in this experiment is "student" data available at arff format. This document assumes that appropriate data pre processing has been performed.

Steps involved in this experiment:

Step-1: We begin the experiment by loading the data (student.arff)into weka.

Step2: Next we select the "classify" tab and click "choose" button t o select the "j48" classifier.

Step3: Now we specify the various parameters. These can be specified by clicking in the text box to the right of the chose button. In this example, we accept the default values. The default version does perform some pruning but does not perform error pruning.

Step4: Under the "text" options in the main panel. We select the 10-fold cross validation as our evaluation approach. Since we don't have separate evaluation data set, this is necessary to get a reasonable idea of accuracy of generated model.

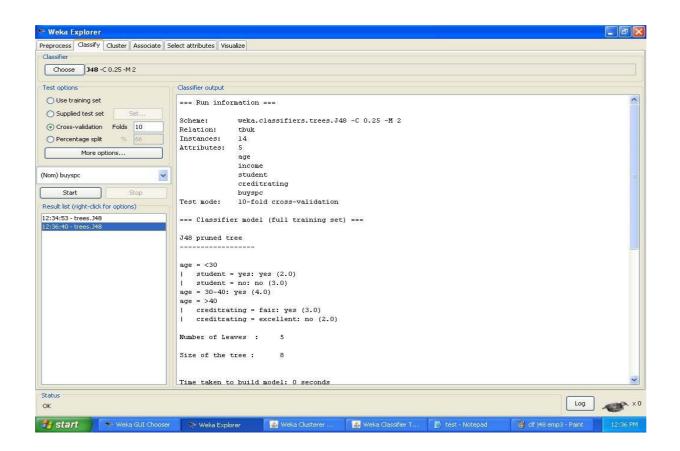
Step-5: We now click "start" to generate the model .the Ascii version of the tree as well as evaluation statistic will appear in the right panel when the model construction is complete.

Step-6: Note that the classification accuracy of model is about 69%.this indicates that we may find more work. (Either in preprocessing or in selecting current parameters for the classification)

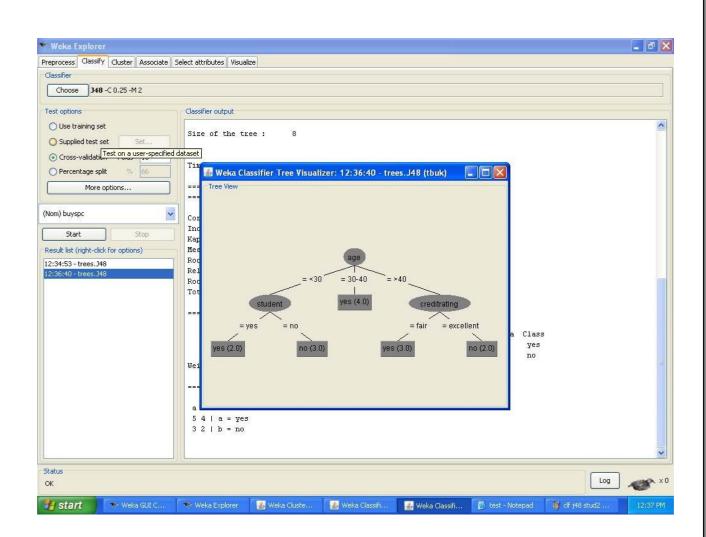
Step-7: Now weka also lets us a view a graphical version of the classification tree. This can be done by right clicking the last result set and selecting "visualize tree" from the pop-up menu.

Step-8: We will use our model to classify the new instances.

Step-9: In the main panel under "text" options click the "supplied test set" radio button and then click the "set" button. This wills pop-up a window which will allow you to open the file containing test instances.


Dataset student .arff

@relation student @attribute age {<30,30-40,>40} @attribute income {low, medium, high} @attribute student {yes, no} @attribute credit-rating {fair, excellent} @attribute buyspc {yes, no} @data % <30, high, no, fair, no <30, high, no, excellent, no 30-40, high, no, fair, yes >40, medium, no, fair, yes >40, low, yes, fair, yes >40, low, yes, excellent, no 30-40, low, yes, excellent, yes <30, medium, no, fair, no <30, low, yes, fair, no >40, medium, yes, fair, yes <30, medium, yes, excellent, yes 30-40, medium, no, excellent, yes 30-40, high, yes, fair, yes


>40, medium, no, excellent, no

%

The following screenshot shows the classification rules that were generated when j48 algorithm is applied on the given dataset.

📚 Weka Explorer										
Preprocess Classify Cluster Associate Se	elect attributes Visualiz	•								
Classifier										
Choose 348 -C 0.25 -M 2										
Test options	Classifier output									
O Use training set	Size of the tre	e:	8							^
O Supplied test set Set										
Cross-validation Folds 10	Time taken to b									
O Percentage split % 66	Time taken to b	uiia moa	er: o secon	103						
More options	=== Stratified === Summary ===		lidation ==	-						
(Nom) buyspc 🗸 🗸 🗸	Correctly Class	ified Tr	stances	7		50	4			
	Incorrectly Cla			7		50	*			
Start Stop	Kappa statistic			-0.04	26					
Result list (right-click for options)	Mean absolute e			0.41						
12:34:53 - trees.J48	Root mean squar			0.59						
12:36:40 - trees.348	Relative absolu Root relative s			87.5 121.29						-
	Total Number of			121.29	D) 5					
	=== Detailed Ac	curacy By	y Class ===							
		TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class		
		0.556	0.6	0.625	0.556	0.588	0.633	yes		
		0.4	0.444	0.333	0.4	0.364	0.633	no		
	Weighted Avg.	0.5	0.544	0.521	0.5	0.508	0.633			-
	=== Confusion M	atrix ==	=.::							
	a b < clas	sified a	3							
	54 a = yes									
	3 2 b = no									
										-
- Status OK									Log	×0
📲 start 🔹 💀 Weka GUI Chooser	💎 Weka Explorer	2	Weka Clustere	er	eka Classifie	сТ.,, [<u>М</u> . в	est - Notepad	👹 df i	48 stud1 - Paint	12:37 PM

6. Demonstration of classification rule process on dataset employee.arff using j48 algorithm

<u>Aim</u>: This experiment illustrates the use of j-48 classifier in weka.the sample data set used in this experiment is "employee" data available at arff format. This document assumes that appropriate data pre processing has been performed.

Steps involved in this experiment:

Step 1: We begin the experiment by loading the data (employee.arff) into weka.

Step2: Next we select the "classify" tab and click "choose" button to select the "j48" classifier.

Step3: Now we specify the various parameters. These can be specified by clicking in the text box to the right of the chose button. In this example, we accept the default values the default version does perform some pruning but does not perform error pruning.

Step4: Under the "text "options in the main panel. We select the 10-fold cross validation as our evaluation approach. Since we don't have separate evaluation data set, this is necessary to get a reasonable idea of accuracy of generated model.

Step-5: We now click "start" to generate the model .the ASCII version of the tree as well as evaluation statistic will appear in the right panel when the model construction is complete.

Step-6: Note that the classification accuracy of model is about 69% this indicates that we may find more work. (Either in preprocessing or in selecting current parameters for the classification)

Step-7: Now weka also lets us a view a graphical version of the classification tree. This can be done by right clicking the last result set and selecting "visualize tree" from the pop-up menu.

Step-8: We will use our model to classify the new instances.

Step-9: In the main panel under "text "options click the "supplied test set" radio button and then click the "set" button. This wills pop-up a window which will allow you to open the file containing test instances.

Data set employee.arff:

@relation employee

@attribute age {25, 27, 28, 29, 30, 35, 48}

@attribute salary{10k,15k,17k,20k,25k,30k,35k,32k}

@attribute performance {good, avg, poor}

@data

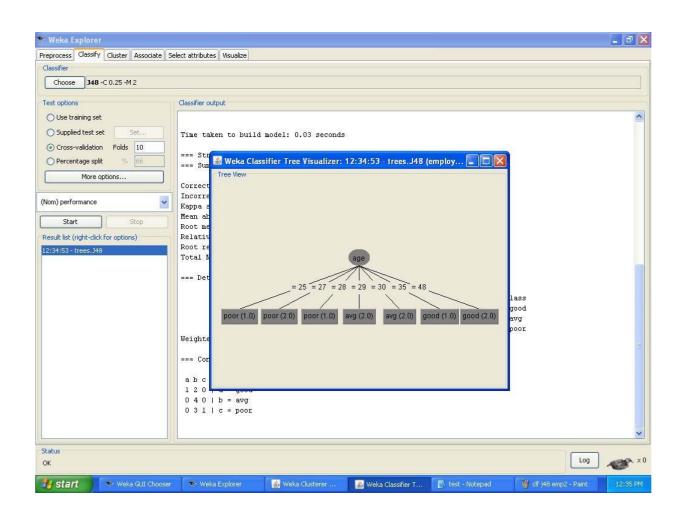
%

25, 10k, poor

27, 15k, poor

27, 17k, poor

- 28, 17k, poor
- 29, 20k, avg
- 30, 25k, avg
- 29, 25k, avg
- 30, 20k, avg
- 35, 32k, good
- 48, 34k, good


48, 32k,good

%

The following screenshot shows the classification rules that were generated whenj48 algorithm is applied on the given dataset.

🔊 Weka Explorer	
Preprocess Classify Cluster Associate S	Select attributes Visualize
Classifier	
Choose 348 -C 0.25 -M 2	
Test options	Classifier output
O Use training set	=== Run information ===
O Supplied test set Set	Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
⊙ Cross-validation Folds 10	Scheme: weka.classifiers.trees.J48 -t 0.25 -M 2 Relation: employee
O Percentage split % 66	Instances: 11
More options	Attributes: 3 age
	salary
(Nom) performance 🛛 🗸 🗸	performance Entry Test mode: 10-fold cross-validation
Start Stop	rest mode: 10-101d cross-validation
Result list (right-click for options)	=== Classifier model (full training set) ===
12:34:53 - trees.J48	J48 pruned tree
	age = 25: poor (1.0)
	age = 27: poor (2.0)
	age = 28: poor (1.0)
	age = 29: avg (2.0) age = 30: avg (2.0)
	age = 35: good (1.0)
	age = 48: good (2.0)
	Number of Leaves : 7
	Size of the tree : 8
	Time taken to build model: 0.03 seconds
	=== Stratified cross-validation ===
Status	
ок	Log ×0
🛃 start 🔹 💀 Weka GUI Chooser	🕫 📎 Weka Explorer 🛃 Weka Clusterer Visual 🚺 test - Notepad 🛛 🙀 dtr. stud3 - Paint 12:34 PM

📚 Weka Explorer		
Preprocess Classify Cluster Associate Se	slect attributes Visualize	
Classifier		
Choose J48 -C 0.25 -M 2		
Test options	Classifier output	
🔘 Use training set		~
O Supplied test set	Time taken to build model: 0.03 seconds	
⊙ Cross-validation Folds 10		
O Percentage split % 66	=== Stratified cross-validation === === Summary ===	
More options	1/15/24/08/07/1677	
	Correctly Classified Instances 6 54.5455 % Incorrectly Classified Instances 5 45.4545 %	
(Nom) performance 🛛 🔽	Kappa statistic 0.2949	
Start Stop	Mean absolute error 0.2209	
Result list (right-click for options)	Root mean squared error 0.3501 Relative absolute error 46.716 %	
12:34:53 - trees.J48	Root relative squared error 69.5748 %	
	Total Number of Instances 11	
	=== Detailed Accuracy By Class ===	
	TP Rate FP Rate Precision Recall F-Measure ROC Area Class	
	0.333 0 1 0.333 0.5 0.771 good	
	1 0.714 0.444 1 0.615 1 avg 0.25 0 1 0.25 0.4 0.804 poor	
	Weighted Avg. 0.545 0.26 0.798 0.545 0.506 0.866	
	=== Confusion Matrix ===	
	a b c < classified as 1 2 0 a = good	
	0 4 0 b = avg	
	0 3 1 c = poor	
		~
		N
Status OK		Log 💉 V
🤧 start 🔷 💀 Weka GUI Chooser	📎 Weka Explorer 📓 Weka Clusterer Visual 🌓 test - Notepad 🛛 🦉 cli j48 emp - Paint	12:35 PM

7. Demonstration of classification rule process on dataset employee.arff using id3 algorithm

<u>Aim:</u> This experiment illustrates the use of id3 classifier in weka. The sample data set used in this experiment is "employee" data available at arff format. This document assumes that appropriate data pre processing has been performed.

Steps involved in this experiment:

1. We begin the experiment by loading the data (employee.arff) into weka.

Step2: next we select the "classify" tab and click "choose" button to select the "id3" classifier.

Step3: now we specify the various parameters. These can be specified by clicking in the text box to the right of the chose button. In this example, we accept the default values his default version does perform some pruning but does not perform error pruning.

Step4: under the "text "options in the main panel. We select the 10-fold cross validation as our evaluation approach. Since we don't have separate evaluation data set, this is necessary to get a reasonable idea of accuracy of generated model.

Step-5: we now click"start"to generate the model .the ASCII version of the tree as well as evaluation statistic will appear in the right panel when the model construction is complete.

Step-6: note that the classification accuracy of model is about 69%.this indicates that we may find more work. (Either in preprocessing or in selecting current parameters for the classification)

Step-7: now weka also lets us a view a graphical version of the classification tree. This can be done by right clicking the last result set and selecting "visualize tree" from the pop-up menu.

Step-8: we will use our model to classify the new instances.

Step-9: In the main panel under "text "options click the "supplied test set" radio button and then click the "set" button. This will show pop-up window which will allow you to open the file containing test instances.

Data set employee.arff:

@relation employee

@attribute age {25, 27, 28, 29, 30, 35, 48}

@attribute salary{10k,15k,17k,20k,25k,30k,35k,32k}

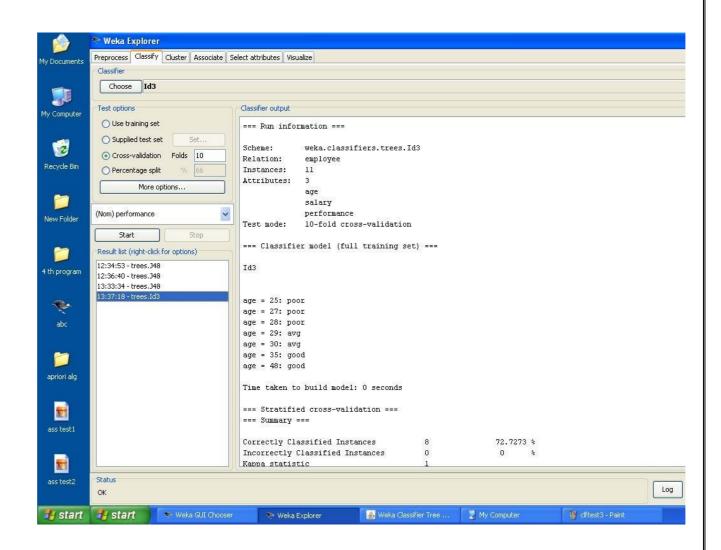
@attribute performance {good, avg, poor}

@data

%

25, 10k, poor

27, 15k, poor


27, 17k, poor

- 28, 17k, poor
- 29, 20k, avg
- 30, 25k, avg
- 29, 25k, avg
- 30, 20k, avg
- 35, 32k, good
- 48, 34k, good

48, 32k, good

%

The following screenshot shows the classification rules that were generated when id3 algorithm is applied on the given dataset.

	📎 Weka Explorer								
	Preprocess Classify Cluster Associate S	alaak akkika kaa							
My Documents	Classifier	elect attributes visualize							
	Choose Id3								
	Choose 103								
My Computer	Test options	Classifier output							
my comparer	🔿 Use training set		2005/ 05	828					
	O Supplied test set Set	Time taken to build mod	iel: U secoi	nds					
1	• Cross-validation Folds 10	=== Stratified cross-va	alidation =:	002					
Recycle Bin	O Percentage split % 66	=== Summary ===							
		Correctly Classified In		8		72.7273	۰.		
-	More options	Incorrectly Classified in		° 0			₹ \		
		Kappa statistic		1			2.K		
New Folder	(Nom) performance 🛛 😽	Mean absolute error		0					
	Start Stop	Root mean squared error		0					
	Start Stop	Relative absolute error	6	0	÷				
2	Result list (right-click for options)	Root relative squared (error	0	*				
	12:34:53 - trees.J48	UnClassified Instances		3		27.2727	*		
4 th program	12:36:40 - trees.348	Total Number of Instand	ces	11					
	13:33:34 - trees.J48								
-	13:37:18 - trees.Id3	=== Detailed Accuracy H	Sy Class ==:						
ebc		TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class	
abc		1	0	18	1	10	0.833	good	
		1	0	1	1	1	1	avg	
1000		1	0	1	1	1	0.75	poor	
1		Weighted Avg. 1	0	l	1	1	0.896		
apriori alg		=== Confusion Matrix ==							
		abc < classifie	4 60						
1		200 a = good	1 45						
ass test1		040 b=avg							
ass test r		0 0 2 c = poor							
	Chattan (8							
ass test2	Status OK								Log
		t allower in the	Cinese and		I and	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	T. mar	Carlos Contractor	
🦺 start	Start 📏 😵 Weka GUI Chooser	🖘 Weka Explorer	S Wek	a Classifier Tree		My Computer	W	id3 emp1 - Paint	

8.Demonstration of classification rule process on dataset employee.arff using naïve baves algorithm

<u>Aim:</u> This experiment illustrates the use of naïve bayes classifier in weka. The sample data set used in this experiment is "employee"data available at arff format. This document assumes that appropriate data pre processing has been performed.

Steps involved in this experiment:

1. We begin the experiment by loading the data (employee.arff) into weka.

Step2: next we select the "classify" tab and click "choose" button to select the "id3" classifier.

Step3: now we specify the various parameters. These can be specified by clicking in the text box to the right of the chose button. In this example, we accept the default values his default version does perform some pruning but does not perform error pruning.

Step4: under the "text "options in the main panel. We select the 10-fold cross validation as our evaluation approach. Since we don't have separate evaluation data set, this is necessary to get a reasonable idea of accuracy of generated model.

Step-5: we now click"start"to generate the model .the ASCII version of the tree as well as evaluation statistic will appear in the right panel when the model construction is complete.

Step-6: note that the classification accuracy of model is about 69%.this indicates that we may find more work. (Either in preprocessing or in selecting current parameters for the classification)

Step-7: now weka also lets us a view a graphical version of the classification tree. This can be done by right clicking the last result set and selecting "visualize tree" from the pop-up menu.

Step-8: we will use our model to classify the new instances.

Step-9: In the main panel under "text "options click the "supplied test set" radio button and then click the "set" button. This will show pop-up window which will allow you to open the file containing test instances.

Data set employee.arff:

@relation employee

@attribute age {25, 27, 28, 29, 30, 35, 48}

@attribute salary{10k,15k,17k,20k,25k,30k,35k,32k}

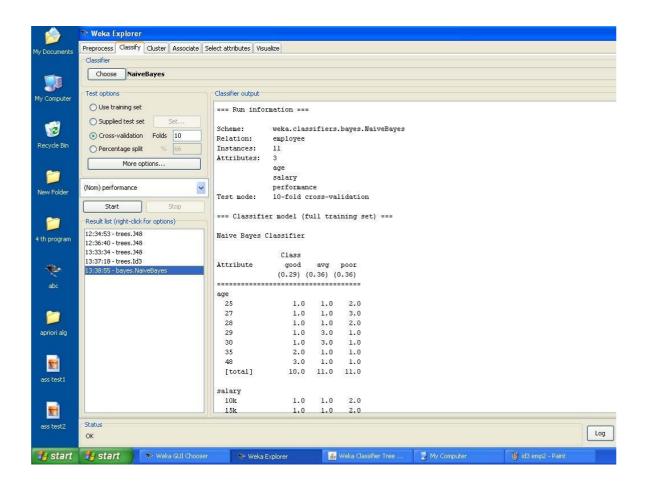
@attribute performance {good, avg, poor}

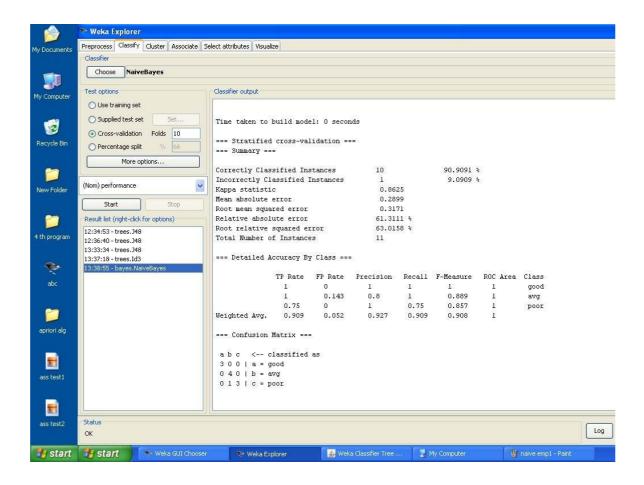
@data

%

25, 10k, poor

27, 15k, poor


27, 17k, poor


- 28, 17k, poor
- 29, 20k, avg
- 30, 25k, avg
- 29, 25k, avg
- 30, 20k, avg
- 35, 32k, good
- 48, 34k, good

48, 32k, good

%

The following screenshot shows the classification rules that were generated when naive bayes algorithm is applied on the given dataset.

9. Demonstration of clustering rule process on dataset iris.arff using simple k-means

<u>Aim</u>: This experiment illustrates the use of simple k-mean clustering with Weka explorer. The sample data set used for this example is based on the iris data available in ARFF format. This document assumes that appropriate preprocessing has been performed. This iris dataset includes 150 instances.

Steps involved in this Experiment

Step 1: Run the Weka explorer and load the data file iris.arff in preprocessing interface.

Step 2: Inorder to perform clustering select the 'cluster' tab in the explorer and click on the choose button. This step results in a dropdown list of available clustering algorithms.

Step 3 : In this case we select 'simple k-means'.

Step 4: Next click in text button to the right of the choose button to get popup window shown in the screenshots. In this window we enter six on the number of clusters and we leave the value of the seed on as it is. The seed value is used in generating a random number which is used for making the internal assignments of instances of clusters.

Step 5 : Once of the option have been specified. We run the clustering algorithm there we must make sure that they are in the 'cluster mode' panel. The use of training set option is selected and then we click 'start' button. This process and resulting window are shown in the following screenshots.

Step 6 : The result window shows the centroid of each cluster as well as statistics on the number and the percent of instances assigned to different clusters. Here clusters centroid are means vectors for each clusters. This clusters can be used to characterized the cluster. For eg, the centroid of cluster1 shows the class iris.versicolor mean value of the sepal length is 5.4706, sepal width 2.4765, petal width 1.1294, petal length 3.7941.

Step 7: Another way of understanding characteristics of each cluster through visualization ,we can do this, try right clicking the result set on the result. List panel and selecting the visualize cluster assignments.

The following screenshot shows the clustering rules that were generated when simple k means algorithm is applied on the given dataset.

<u>s</u>	Weka Explorer	
Preprocess Classify Cluster Associate Select attributes Vi	sualize	
Clusterer		
Choose SimpleKMeans -N 2 -S 10		
Cluster mode	Clusterer output	
Use training set Supplied test set Percentage split Classes to clusters evaluation (Nom) class Store clusters for visualization Ignore attributes Start Stop Result list (right-click for options) I1:59:53 - SimpleKMeans	<pre>=== Run information === Scheme: weka.clusterers.SimpleRMeans -N 2 -S 10 Relation: iris Instances: 150 Attributes: 5 sepallength sepalwidth petalwidth class Test mode: evaluate on training data ==== Model and evaluation on training set === kMeans</pre>	
	Number of iterations: 7 Within cluster sum of squared errors: 62.1436882815797 Cluster centroids: Cluster 0 Mean/Mode: 6.262 2.872 4.906 1.676 Itean/Mode: 6.262 0.3328 0.6628 0.3328 0.8256 0.4248 Number 1 Mean/Mode: 5.006 Mean/Mode: 5.006 3.418 1.464 0.244 Iris-setosa Std Devs: 0.3525 0.3525 0.1072 Muther 1.01735 Mean/Mode: 1.01735 0.1735 0.1072 Muther 1.01735 Muther 1.01735	
Status OK		Log x 0

Interpretation of the above visualization

From the above visualization, we can understand the distribution of sepal length and petal length in each cluster. For instance, for each cluster is dominated by petal length. In this case by changing the color dimension to other attributes we can see their distribution with in each of the cluster.

Step 8: We can assure that resulting dataset which included each instance along with its assign cluster. To do so we click the save button in the visualization window and save the result iris k-mean .The top portion of this file is shown in the following figure.

	Weka Explorer	000
Preprocess Classify Cluster Associate Select attributes	sualize	
Clusterer		
Choose SimpleKMeans -N 2 -5 10		
Cluster mode	Clusterer output	
🕥 Use training set		
Currelied Fact act	=== Run information ===	
	Weka Explorer	
Preprocess Classify Cluster Associate Select attributes	Sudiize	
Choose SimpleKMeans -N 2 -5 10		
Simplek leans 402-510		
Cluster mode	- Clusterer output	
⊙ Use training set	Instances: 150	*
O Supplied test set Set	Instances: 150 Attributes: 5	
O Percentage split % 66	sepallength	
O Classes to clusters evaluation	sepalwidth petallength	
(Nom) class	🖌 🛛 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉	
Store clusters for visualization	Test mode: X: Instance_number (Num) Y: sepalength (Num)	1
	Test mode: X: Instance_number (Num) Y: sepalength (Num) Colour: Cluster (Nom) Select Instance	
Ignore attributes	=== Model and	l.
Start Stop	Reser Liear Save Jitter 😣	
Result list (right-click for options)	kMeans Plot: iris_clustered	-
11:58:53 - SimpleKMeans	7.9	
11:56:53 - Simplekvieans	Number of iter	
	Within cluster	
	Number of iter Within cluster Cluster centrc	
	Cluster 0 4.3	
	Mean/F 0 74.5 149	
	Cluster 1 Class colour	
	Mean/F Std De	
	cluster0 cluster1	
	Clustered Inst	

<u>10. Demonstration of clustering rule process on dataset student.arff using simple k-means</u>

<u>Aim</u>: This experiment illustrates the use of simple k-mean clustering with Weka explorer. The sample data set used for this example is based on the student data available in ARFF format. This document assumes that appropriate preprocessing has been performed. This istudent dataset includes 14 instances.

Steps involved in this Experiment

Step 1: Run the Weka explorer and load the data file student.arff in preprocessing interface.

Step 2: Inorder to perform clustering select the 'cluster' tab in the explorer and click on the choose button. This step results in a dropdown list of available clustering algorithms.

Step 3 : In this case we select 'simple k-means'.

Step 4: Next click in text button to the right of the choose button to get popup window shown in the screenshots. In this window we enter six on the number of clusters and we leave the value of the seed on as it is. The seed value is used in generating a random number which is used for making the internal assignments of instances of clusters.

Step 5 : Once of the option have been specified. We run the clustering algorithm there we must make sure that they are in the 'cluster mode' panel. The use of training set option is selected and then we click 'start' button. This process and resulting window are shown in the following screenshots.

Step 6 : The result window shows the centroid of each cluster as well as statistics on the number and the percent of instances assigned to different clusters. Here clusters centroid are means vectors for each clusters. This clusters can be used to characterized the cluster.

Step 7: Another way of understanding characteristics of each cluster through visualization ,we can do this, try right clicking the result set on the result. List panel and selecting the visualize cluster assignments.

Interpretation of the above visualization

From the above visualization, we can understand the distribution of age and instance number in each cluster. For instance, for each cluster is dominated by age. In this case by changing the color dimension to other attributes we can see their distribution with in each of the cluster.

Step 8: We can assure that resulting dataset which included each instance along with its assign cluster. To do so we click the save button in the visualization window and save the result student k-mean .The top portion of this file is shown in the following figure.

Dataset student .arff

@relation student @attribute age {<30,30-40,>40} @attribute income {low,medium,high} @attribute student {yes,no} @attribute credit-rating {fair,excellent} @attribute buyspc {yes,no} @data % <30, high, no, fair, no <30, high, no, excellent, no 30-40, high, no, fair, yes >40, medium, no, fair, yes >40, low, yes, fair, yes >40, low, yes, excellent, no 30-40, low, yes, excellent, yes <30, medium, no, fair, no <30, low, yes, fair, no >40, medium, yes, fair, yes <30, medium, yes, excellent, yes 30-40, medium, no, excellent, yes 30-40, high, yes, fair, yes >40, medium, no, excellent, no %

The following screenshot shows the clustering rules that were generated when simple kmeans algorithm is applied on the given dataset.

» Weka Explorer						
Preprocess Classify Cluster Associate Select attributes	Visualize					
Clusterer						
Choose SimpleKMeans -N 2 -A "weka.core.Euclidean	nDistance -R first-last"	-I 500 -S 10				
Cluster mode	Clusterer outr Lef	t-click to edit propertie	s for this object	t, right-click/Alt+Shi	ft+left-click for menu	
⊙ Use training set	=== Run info	rmation ===			10. 	^
O Supplied test set	Scheme:	weka.clustere	rs.SimpleK	Means -N 2 -A	"weka.core.EuclideanDistan	ce -R first-last"
O Percentage split % 66	Relation:	tbuk	6			
Classes to clusters evaluation	Instances:	14				
(Nom) buyspc	Attributes:	5				
Store clusters for visualization		age				
		income student				
Ignore attributes		creditrating				
Ignore attributes		buyspc				
Start Stop	Test mode:	evaluate on t	raining da	ta		
Result list (right-click for options)	Model an	d evaluation on	training	eat		
12:26:56 - SimpleKMeans	Hoder an	a evaluación on	. craining	Sec		
12:27:32 - SimpleKMeans						
12:30:41 - SimpleKMeans	kMeans					
	Number of it	erations: 5 er sum of squar	ad arrars.	25.0		
	A MARKA CARACTERISTICS	es globally rep				
	Cluster cent	roids:				
	NA 18275		Cluster#			
	Attribute	Full Data	0	1		
		(14)	(9)	(5)		
	age	<30	<30	30-40		
	income	nedium	medium	10w		
	student	ves	no	ves		~
	<			uur .		>
tatus						
DK .						Log X
y start 🔹 Weka GUI Chooser 🔷 😞 w	eka Explorer	🚺 test - Notepa	d	🦉 untitled - Paint		12:31 PM

🥸 Weka Explorer			
Preprocess Classify Cluster Associate Select attributes	/isualize		
Clusterer			
Choose SimpleKMeans -N 2 -A "weka.core.Euclidean	Distance -R first-last" -I 500 -S 10		
Cluster mode	Clusterer output		
O Use training set	buyspc		~
O Supplied test set Set	Test mode: evaluate on training data	3	
O Percentage split % 66	=== Model and evaluation on training se	2t ===	
O Classes to clusters evaluation			
(Nom) buyspc 😽	kMeans		
Store clusters for visualization			
Ignore attributes	Number of iterations: 5		
	Within cluster sum of squared errors: 2 Missing values globally replaced with m		
Start Stop			
Result list (right-click for options)	Cluster centroids: Cluster#		
12:26:56 - SimpleKMeans 12:27:32 - SimpleKMeans	Attribute Full Data 0	1	
12:30:41 - SimpleKMeans	(14) (9)	(5)	
	age <30 <30	30-40	
	income medium medium student yes no	low yes	
	creditrating fair fair	fair	
	buyspc yes yes	yes	
	Clustered Instances		
	0 9 (64%)		
	1 5 (36%)		
			~
	<		
Status			
ОК			Log ×0
😗 start 🔷 Weka GUI Chooser 🔷 👳 We	xa Explorer 🚺 test - Notepad 🚺	🍟 cltr stud - Paint	12:32 PM

eprocess Classify Cluster Associate Select attributes	Visualize	
lusterer		
Choose SimpleKMeans -N 2 -A "weka.core.Euclide	anDistance -R first-last" -I 500 -S 10	
luster mode	Clusterer output	
Use training set	buyspc	
Supplied test set Set	Test mode: evaluate on training data	
	=== Model and evaluation on training set ===	
Percentage split % 66		
Classes to clusters evaluation	📓 Weka Clusterer Visualize: 12:30:41 - SimpleKMeans (tbuk)	
(Nom) buyspc	Weka Clusterer Visualize: 12:30:41 - Simplexmeans (IDuk)	
Store clusters for visualization	X: Instance_number (Num) Y: age (Nom)	
Ignore attributes	Colour: Cluster (Nom) 🗸 Select Instance	
	Reset Clear Open Save Jitter	
Start Stop		
esult list (right-click for options)	Plot: tbuk_dustered	
2:26:56 - SimpleKMeans 2:27:32 - SimpleKMeans	4 × × × × × × × × × ×	
::27:52 - SimpleKMeans ::30:41 - SimpleKMeans	Q Y	
	3 0 - X X X X	
	3	
	0 6.5 13	
	Class colour	
	cluster1 cluster2	
	CIUSCEII CIUSCEIZ	
	K	
itus		
Contraction 100 (100 (100 (100 (100 (100 (100 (100		Log