
Unix Programming Lab Record

1

Q)Discuss the login process in UNIX?

On switching in a UNIX environment, the Kernel program is first program that is loaded in the computer’s

memory. From the Hard-disk , this program triggers a chain of initialization processes at the end of which the

login prompt appears on the screen.

On entering a login name, the login program is activated, login points the password prompt on he screen and

turn off character echoing , so that the password entered is not displayed on the terminal. Login compares the

password entered with the /etc/passwd file. If they match, a program named in the same file replaces the login

program. The program named is usually BOURNE SHELL or the C SHELL and is called login shell.

LOGIN PROCESS IN A UNIX SYSTEM

 Kernel Process

INSTALLATION

PROCESS

-display time

On responding

To login

 LOGIN PROGRAM

 Checks name & password

 To obtain a match

LOGIN

SHELL

Unix Programming Lab Record

2

Unix Commands

alias COMMAND:

alias command allows you to create a shortcut to a command. As the name indicates, you can set alias name for the commands/paths

which is too longer to remember.

SYNTAX:

 The Syntax is

 alias [options] [AliasName [=String]]

OPTIONS:

-a Removes all alias definitions from the current shell execution environment.

-p Prints the list of aliases in the form alias name=value on standard output.

EXAMPLE:

1. To create a shortcut temporarily:

alias lhost='cd /var/www/html'

This command will set lhost to cd /var/www/html/.

Now if you type lhost it will take you to the specified folder/directory.

2. To create a shortcut Permanently:

You can put your aliases into the /home/user/.bashrc file. It is good to add them at the end of the file.

alias home='cd /var/www/html/hscripts/linux-commands'

Now if you type home it will take you to the specified folder/directory.

3. To create a shortcut for a command:

alias c='clear'

This command will set c to clear.

Now if you type c it will clear the screen.

banner COMMAND :

SYNTAX:

 banner <argument>

It displays the argument in large banner form on the screen. It does not work in Linux.

Bc COMMAND:

bc command is used for command line calculator. It is similar to basic calculator. By using which we can do basic mathematical

calculations.

SYNTAX:

 The Syntax is

 bc [options]

OPTIONS:

Unix Programming Lab Record

3

-c Compile only. The output is dc commands that are sent to the standard output.

-l Define the math functions and initialize scale to 20, instead of the default zero.

filename
Name of the file that contains the basic calculator commands to be calculated this is not a necessary

command.

bg COMMAND:

 bg command is used to place a job in background. User can run a job in the background by adding a "&" symbol at end of the

command.

SYNTAX:

 The Syntax is

 bg [options] [job]

OPTIONS:

-l Report the process group ID and working directory of the jobs.

-p Report only the process group ID of the jobs.

-x
Replace any job_id found in command or arguments with the corresponding process group ID, then execute

command passing it arguments.

job Specifies the job that want to run in the background.

cal COMMAND:
 cal command is used to display the calendar.

SYNTAX:

 The Syntax is

 cal [options] [month] [year]

OPTIONS:

-1 Displays single month as output.

-3 Displays prev/current/next month output.

-s Displays sunday as the first day of the week.

-m Displays Monday as the first day of the week.

-j Displays Julian dates (days one-based, numbered from January 1).

-y Displays a calendar for the current year.

cat COMMAND:
 cat linux command concatenates files and print it on the standard output.

SYNTAX:

 The Syntax is

 cat [OPTIONS] [FILE]...

OPTIONS:

-A Show all.

-b Omits line numbers for blank space in the output.

-e A $ character will be printed at the end of each line prior to a new line.

-E Displays a $ (dollar sign) at the end of each line.

-n Line numbers for all the output lines.

Unix Programming Lab Record

4

-s If the output has multiple empty lines it replaces it with one empty line.

-T Displays the tab characters in the output.

-v Non-printing characters (with the exception of tabs, new-lines and form-feeds) are printed visibly.

cc COMMAND (cc means c compiler) :

it compiles the c program and creates a binary or output file normally its output file is a.out. This can be changed with the help of –o

option with cc command.

Syntax cc <c filename>

cd COMMAND:
 cd command is used to change the directory.

SYNTAX:

 The Syntax is

 cd [directory | ~ | ./ | ../ | -]

OPTIONS:

-L Use the physical directory structure.

-P Forces symbolic links.

chgrp COMMAND:

 chgrp command is used to change the group of the file or directory. This is an admin command. Root user

only can change the group of the file or directory.

SYNTAX:

 The Syntax is

 chgrp [options] newgroup filename/directoryname

OPTIONS:

-R Change the permission on files that are in the subdirectories of the directory that you are currently in.

-c Change the permission for each file.

-f Force. Do not report errors.

EXAMPLE:

1. chgrp hiox test.txt (The group of 'test.txt' file is root, Change to newgroup hiox.)

chmod COMMAND:
 chmod command allows you to alter / Change access rights to files and directories.

File Permission is given for users,group and others as,

 Read Write Execute

User

Unix Programming Lab Record

5

Group

Others

Permission 000

Symbolic Mode ___ ___ ___

SYNTAX:

 The Syntax is

 chmod [options] [MODE] FileName

File Permission

File Permission

0 none

1 execute only

2 write only

3 write and execute

4 read only

5 read and execute

6 read and write

7 set all permissions

OPTIONS:

-c Displays names of only those files whose permissions are being changed

-f Suppress most error messages

-R Change files and directories recursively

-v Output version information and exit.

EXAMPLE:

1. To make a file readable and writable by the group and others.

chmod 066 file1.txt

2. To allow everyone to read, write, and execute the file

chmod 777 file1.txt

chown COMMAND:

 chown command is used to change the owner / user of the file or directory. This is an admin command, root user only can change

the owner of a file or directory.

SYNTAX:

 The Syntax is

 chown [options] newowner filename/directoryname

OPTIONS:

-R Change the permission on files that are in the subdirectories of the directory that you are currently in.

-c Change the permission for each file.

Unix Programming Lab Record

6

-f Prevents chown from displaying error messages when it is unable to change the ownership of a file.

EXAMPLE:

1. chown hiox test.txt

The owner of the 'test.txt' file is root, Change to new user hiox.

2. chown -R hiox test

The owner of the 'test' directory is root, With -R option the files and subdirectories user also gets changed.

clear COMMAND:
 This command clears the terminal screen.

SYNTAX:

 The Syntax is

 clear

cmp COMMAND:

 cmp linux command compares two files and tells you which line numbers are different.

SYNTAX:

 The Syntax is

 cmp [options..] file1 file2

OPTIONS:

- c Output differing bytes as characters.

- l Print the byte number (decimal) and the differing byte values (octal) for each difference.

- s Prints nothing for differing files, return exit status only.

EXAMPLE:

 Compare two files:

cmp file1 file2

The above cmp command compares file1.php with file2.php and results as follows.

file1.php file2.php differ: byte 35, line 3

cp COMMAND:
 cp command copy files from one location to another. If the destination is an existing file, then the file is overwritten; if the

destination is an existing directory, the file is copied into the directory (the directory is not overwritten).

SYNTAX:

 The Syntax is

 cp [OPTIONS]... SOURCE DEST

 cp [OPTIONS]... SOURCE... DIRECTORY

 cp [OPTIONS]... --target-directory=DIRECTORY SOURCE...

OPTIONS:

-a same as -dpR.

--backup[=CONTROL] make a backup of each existing destination file

-b like --backup but does not accept an argument.

-f if an existing destination file cannot be opened, remove it and try again.

-p same as --preserve=mode,ownership,timestamps.

--

preserve[=ATTR_LIST]

preserve the specified attributes (default: mode,ownership,timestamps) and security contexts, if

possible additional attributes: links, all.

--no-

preserve=ATTR_LIST
don't preserve the specified attribute.

Unix Programming Lab Record

7

--parents append source path to DIRECTORY.

EXAMPLE:

1. Copy two files:

cp file1 file2

The above cp command copies the content of file1.php to file2.php.

chfn command - change your finger information

SYNOPSIS

chfn [-f full-name] [-o office] [-p office-phone] [-h home-phone] [-u] [-v] [username]

DESCRIPTION

chfn is used to change your finger information. This information is stored in the /etc/passwd file, and is displayed by the finger

program. The Linux finger command will display four pieces of information that can be changed by chfn : your real name, your work

room and phone, and your home phone.

COMMAND LINE

Any of the four pieces of information can be specified on the command line. If no information is given on the command line, chfn

enters interactive mode.

INTERACTIVE MODE

In interactive mode, chfn will prompt for each field. At a prompt, you can enter the new information, or just press return to leave the

field unchanged. Enter the keyword "none" to make the field blank.

OPTIONS

-f, --full-name

Specify your real name.

-o, --office

Specify your office room number.

-p, --office-phone

Specify your office phone number.

-h, --home-phone

Specify your home phone number.

-u, --help

Print a usage message and exit.

-v, --version

Print version information and exit.

date COMMAND:

 date command prints the date and time.

SYNTAX:

 The Syntax is

 date [options] [+format] [date]

Unix Programming Lab Record

8

OPTIONS:

-a
Slowly adjust the time by sss.fff seconds (fff represents fractions of a second). This adjustment can be

positive or negative.Only system admin/ super user can adjust the time.

-s date-

string

Sets the time and date to the value specfied in the datestring. The datestr may contain the month names,

timezones, 'am', 'pm', etc.

-u Display (or set) the date in Greenwich Mean Time (GMT-universal time).

Format:

%a

Abbreviated weekday(Tue).

%A Full weekday(Tuesday).

%b Abbreviated month name(Jan).

%B Full month name(January).

%c Country-specific date and time format..

%D Date in the format %m/%d/%y.

%j Julian day of year (001-366).

%n Insert a new line.

%p String to indicate a.m. or p.m.

%T Time in the format %H:%M:%S.

%t Tab space.

%V Week number in year (01-52); start week on Monday.

EXAMPLE:

date command

date (The above command will print Wed Jul 23 10:52:34 IST 2008)

df COMMAND:
 df command is used to report how much free disk space is available for each mount you have. The first column show the name of

the disk partition as it appears in the /dev directory. Subsequent columns show total space, blocks allocated and blocks available.

SYNTAX:

 The Syntax is

 df [options]

OPTIONS:

-a Include dummy file systems.

-h Print sizes in human readable format.(e.g., 1K 234M 2G)

-H Print sizes in human readable format but use powers of 1000 not 1024.

-i List inode information instead of block usage.

-l Limit listing to local file systems.

-P Use the POSIX output format.

-T Print file system type.

EXAMPLE:

1. df

Unix Programming Lab Record

9

Output:

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/mapper/VolGroup00-LogVol00

 150263916 14440324 128067408 11% /

/dev/sda1 101086 10896 84971 12% /boot

tmpfs 253336 0 253336 0% /dev/shm

In the above output:

 /dev/mapper/VolGroup00-LogVol00 -> Specifies FileSystem.

 /dev/sda1 -> Specifies FileSystem.

 tmpfs -> Specifies FileSystem.

Prints default format.

du COMMAND:
 du command is used to report how much disk space a file or directory occupies.

SYNTAX:

 The Syntax is du [options] directories

OPTIONS:

-a Displays the usage of space that each file is taking up.

-k Write the files size in units of 1024 bytes, rather than the default 512-byte units.

-s Instead of the default output, report only the total sum for each of the specified files.

-L
Process symbolic links by using the file or directory which the symbolic link references, rather than the link

itself.

-x
When evaluating file sizes, evaluate only those files that have the same device as the file specified by the file

operand.

EXAMPLE:

1. du -a images

Output:

12 images/daisy.jpg

20 images/flo.gif

76 images/CHILD.gif

12 images/indigo.gif

152 images/flower.gif

12 images/sunflower.jpg

12 images/tulip-flower-clipart5.gif

12 images/flower.jpg

8 images/thumbnail.aspx

8 images/baby.jpg

12 images/woodpecker.gif

168 images/baby.gif

8 images/thumbnail.jpg

1012 images/house.bmp

12 images/peacock.gif

1544 images

Displays the size of each file in the specified directory.

diff COMMAND:
 diff command is used to find differences between two files.

Unix Programming Lab Record

10

SYNTAX:

 The Syntax is

 diff [options..] from-file to-file

dir COMMAND:

Like DOS it works in Linux environment showing the list of directories and files in a sorted manner in the current directory

Display COMMAND:

display [options ...] file [options...]file

DESCRIPTION

Display is a machine architecture independent image processing and display program. It can display an image on any workstation

screen running an X server. Display can read and write many of the more popular image formats (e.g. JPEG, TIFF, PNM, Photo

CD, etc.).

With display, you can perform these functions on an image:

load an image from a file

display a sequence of images as a slide show

write the image to a file

delete the image file

copy & paste a region of the image

resize the image

Unix Programming Lab Record

11

echo COMMAND:

 echo command prints the given input string to standard output.

SYNTAX:

 The Syntax is

 echo [options..] [string]

OPTIONS:

-n do not output the trailing newline

-e enable interpretation of the backslash-escaped characters listed below

-E disable interpretation of those sequences in STRINGs

EXAMPLE:

1. echo command

echo "hscripts Hiox India"

The above command will print as hscripts Hiox India

exit COMMAND :

Allows you to exit from a program, shell or log you out of a Unix network.

Syntax

exit

Examples

exit - If supported would exit you from the program, shell or log you out of network.

fg COMMAND:
 fg command is used to place a job in foreground.

SYNTAX:

 The Syntax is

 fg [specify job]

OPTIONS:

 There is no options for fg command.

EXAMPLE:

1. To move a process in foreground:

Unix Programming Lab Record

12

Lets start some three jobs and suspend those running process in background.

kmail- start the email client application.

Press ctrl+z to stop the current job.

xmms- music player application.

Press ctrl+z to stop the current job.

sleep 120- a dummy job.

Press ctrl+z to stop the current job.

jobs

The above command will display the jobs in the shell.

[1] Stopped kmail

[2]- Stopped xmms

[3]+ Stopped sleep 120

fg 1

The above command will run the kmail application process in foreground.

file COMMAND:
 file command tells you if the object you are looking at is a file or a directory.

SYNTAX:

 The Syntax is

 file [options] directoryname/filename

OPTIONS:

-c Check the magic file for format errors. For reasons of efficiency, this validation is normally not carried out.

-h Do not follow symbolic links.

-m Use mfile as an alternate magic file.

-f ffile contains a list of the files to be examined.

EXAMPLE:

1. file *.txt

Output:

aprlist.txt: ASCII English text

cal.txt: ASCII text

marchlist.txt: ASCII English text

text.txt: ASCII text

Prints the 'txt' files.

Unix Programming Lab Record

13

find COMMAND:
 find command finds one or more files assuming that you know their approximate filenames.

SYNTAX:

 The Syntax is

 find path [options]

OPTIONS:

-name It search for the given file, in the current directory or any other subdirectory.

EXAMPLE:

1. find -name 'cal.txt'

The system would search for any file named 'cal.txt' in the current directory and any subdirectory.

finger COMMAND:
 finger command displays the user's login name, real name, terminal name and write status (as a ''*'' after the terminal name if write

permission is denied), idle time, login time, office location and office phone number..

SYNTAX:

 The Syntax is

 finger [-lmsp] [user ...] [user@host ...]

OPTIONS:

- l

Prints all the information described by -s option and also the user's home directory, home phone number,

login shell, mail status, and the contents of the files ".plan",".project",".pgpkey", and ".forward" from the

users home directory.

- m Match arguments only on user name (not first or last name).

- p Supress the prinitng format of -l, It will not display the contents of ".plan",".project", and ".pgkey" files.

- s Prints the output in short format.

EXAMPLE:

1. To Print the user information in short format:

2. finger -s hiox

3. Login Name Tty Idle LoginTime Office OfficePhone

4. HIOX HIOX INDIA *:0 Sep 14 09:07

5. HIOX HIOX INDIA *pts/0 9 Sep 14 09:08

6. HIOX HIOX INDIA *pts/1 1:29 Sep 14 09:12

finger command prints the user information as user's login name, real name, terminal name and write status, idle time, login

time, office location and office phone number.

ftp COMMAND:

ftp [options] [hostname]

Transfer files to and from remote network site hostname. ftp prompts the user for a command. The commands are listed after the

options. Some of the commands are toggles, meaning they turn on a feature when it is off and vice versa. Note that versions may have

different options.

Options

Unix Programming Lab Record

14

-d

Enable debugging.

-g

Disable filename globbing.

-i

Turn off interactive prompting.

-n

No autologin upon initial connection.

-v

Verbose. Show all responses from remote server.

ls COMMAND:
 ls command lists the files and directories under current working directory.

SYNTAX:

 The Syntax is

 ls [OPTIONS]... [FILE]

OPTIONS:

-l
Lists all the files, directories and their mode, Number of links, owner of the file, file size, Modified date and

time and filename.

-t Lists in order of last modification time.

-a Lists all entries including hidden files.

-d Lists directory files instead of contents.

-p Puts slash at the end of each directories.

-u List in order of last access time.

-i Display inode information.

-ltr List files order by date.

-lSr List files order by file size.

EXAMPLE:

 1. Display root directory contents:

ls /

lists the contents of root directory.

2. Display hidden files and directories:

ls -a

lists all entries including hidden files and directories.

man COMMAND:
 man command which is short for manual. It provides in depth information about the requested command (or) allows users to search

for commands related to a particular keyword.

Unix Programming Lab Record

15

SYNTAX:

 The Syntax is

 man commandname [options]

EXAMPLE:

1. man mkdir

Display the information about mkdir command.

mkdir COMMAND:
 mkdir command is used to create one or more directories.

SYNTAX:

 The Syntax is

 mkdir [options] directories

EXAMPLE:

 Create directory:
mkdir test

The above command is used for create the directory 'test'.

more COMMAND:
 more command is used to display text in terminal screen. It allows only backward movement.

SYNTAX:

 The Syntax is

 more [options] filename

OPTIONS:

-c Clear screen before displaying.

-e Exit immediately after writing the last line of the last file in the argument list.

-n Specify how many lines are printed in the screen for a given file.

+n Starts up the file from the given number.

EXAMPLE:

1. more -c index.php

Clear the screen before printing the file .

mv COMMAND:
 mv command which is short for move. This command is used for move/rename file from one directory to another. mv command is

different from cp command as it completely removes the file from the source and moves to the directory specified, where cp command

just copies the content from one file to another.

SYNTAX:

 The Syntax is

 mv [-f] [-i] oldname newname

Unix Programming Lab Record

16

EXAMPLE:

 1. To Rename / Move a file:
mv file1.txt file2.txt

This command renames file1.txt as file2.txt

2. To Move multiple files/More files into another directory

mv file1.txt tmp/file2.txt newdir

This command moves the files file1.txt from the current directory and file2.txt from the tmp

folder/directory to newdir.

passwd COMMAND:
 passwd command is used to change your password.

SYNTAX:

 The Syntax is

 passwd [options]

EXAMPLE:

1. passwd

Entering just passwd would allow you to change the password. After entering passwd you will receive the following three

prompts:

 Current Password:

 New Password:

 Confirm New Password:

Each of these prompts must be entered correctly for the password to be successfully changed.

pwd COMMAND:

 pwd - Print Working Directory. pwd command prints the full filename of the current working directory.

SYNTAX:

 The Syntax is pwd [options]

EXAMPLE:
 Displays the current working directory.

pwd

If you are working in home directory then, pwd command displays the current working directory as /home.

Unix Programming Lab Record

17

rm COMMAND:
 rm linux command is used to remove/delete the file from the directory.

SYNTAX:

 The Syntax is

 rm [options..] [file | directory]

EXAMPLE:

 To Remove / Delete a file:
rm file1.txt

Here rm command will remove/delete the file file1.txt.

rmdir COMMAND:
 rmdir command is used to delete/remove a directory and its subdirectories.

SYNTAX:

 The Syntax is

 rmdir [options..] Directory

EXAMPLE:

 To delete/remove a directory
rmdir tmp

rmdir command will remove/delete the directory tmp if the directory is empty.

Vi COMMAND :

This "vi" tutorial is intended for those who wish to master and advance their skills beyond the basic features of the basic editor. It

covers buffers, "vi" command line instructions, interfacing with UNIX commands, and ctags. The vim editor is an enhanced version of

vi. The improvements are clearly noticed in the handling of tags.

The advantage of learning vi and learning it well is that one will find vi on all Unix based systems and it does not consume an

inordinate amount of system resources. Vi works great over slow network ppp modem connections and on systems of limited

resources. One can completely utilize vi without departing a single finger from the keyboard.

 who COMMAND:
 who command can list the names of users currently logged in, their terminal, the time they have been logged in, and the name of

the host from which they have logged in.

SYNTAX:

 The Syntax is

 who [options] [file]

OPTIONS:

am i Print the username of the invoking user, The 'am' and 'i' must be space separated.

EXAMPLE:

Unix Programming Lab Record

18

1. who -uH

Output:

NAME LINE TIME IDLE PID COMMENT

hiox ttyp3 Jul 10 11:08 . 4578

This sample output was produced at 11 a.m. The "." indiacates activity within the last minute.

2. who am i

who am i command prints the user name.

Unix Programming Lab Record

19

SIMPLE FILTERS

 Filters are the commands which accept data from standard input manipulate it and write the results to

standard output. Filters are the central tools of the UNIX tool kit, and each filter performs a simple function.

Some commands use delimiter, pipe (|) or colon (:). Many filters work well with delimited fields, and some

simply won’t work without them. The piping mechanism allows the standard output of one filter serve as

standard input of another. The filters can read data from standard input when used without a filename as

argument, and from the file otherwise

The Simple Database

Several UNIX commands are provided for text editing and shell programming. (emp.lst) - each line of

this file has six fields separated by five delimiters. The details of an employee are stored in one single line.

This text file designed in fixed format and containing a personnel database. There are 15 lines, where each

field is separated by the delimiter |.

$ cat emp.lst

2233 | a.k.shukla | g.m | sales | 12/12/52 | 6000

9876 | jai sharma | director | production | 12/03/50 | 7000

5678 | sumit chakrobarty | d.g.m. | marketing | 19/04/43 | 6000

2365 | barun sengupta | director | personnel | 11/05/47 | 7800

5423 | n.k.gupta | chairman | admin | 30/08/56 | 5400

1006 | chanchal singhvi | director | sales | 03/09/38 | 6700

6213 | karuna ganguly | g.m. | accounts | 05/06/62 | 6300

1265 | s.n. dasgupta | manager | sales | 12/09/63 | 5600

4290 | jayant choudhury | executive | production | 07/09/50 | 6000

2476 | anil aggarwal | manager | sales | 01/05/59 | 5000

6521 | lalit chowdury | directir | marketing | 26/09/45 | 8200

3212 | shyam saksena | d.g.m. | accounts | 12/12/55 | 6000

3564 | sudhir agarwal | executive | personnel | 06/07/47 | 7500

2345 | j. b. sexena | g.m. | marketing | 12/03/45 | 8000

0110 | v.k.agrawal | g.m.| marketing | 31/12/40 | 9000

pr : paginating files

We know that,

cat dept.lst

01|accounts|6213

02|progs|5423

03|marketing|6521

04|personnel|2365

05|production|9876

06|sales|1006

pr command adds suitable headers, footers and formatted text. pr adds five lines of margin at the top and

bottom. The header shows the date and time of last modification of the file along with the filename and page

number.

pr dept.lst

Unix Programming Lab Record

20

May 06 10:38 1997 dept.lst page 1

01:accounts:6213

02:progs:5423

03:marketing:6521

04:personnel:2365

05:production:9876

06:sales:1006

…blank lines…

pr options

The different options for pr command are:

-k prints k (integer) columns

-t to suppress the header and footer

-h to have a header of user’s choice

-d double spaces input

-n will number each line and helps in debugging

-on offsets the lines by n spaces and increases left margin of page

pr +10 chap01

 starts printing from page 10

pr -l 54 chap01

 this option sets the page length to 54

head – displaying the beginning of the file

The command displays the top of the file. It displays the first 10 lines of the file, when used without

an option.

head emp.lst

-n to specify a line count

head -n 3 emp.lst

 will display the first three lines of the file.

tail – displaying the end of a file

 This command displays the end of the file. It displays the last 10 lines of the file, when used without

an option.

tail emp.lst

-n to specify a line count

Unix Programming Lab Record

21

tail -n 3 emp.lst

 displays the last three lines of the file. We can also address lines from the beginning of the file instead

of the end. The +count option allows to do that, where count represents the line number from where the

selection should begin.

tail +11 emp.lst

 Will display 11th line onwards

Different options for tail are:

• Monitoring the file growth (-f)

• Extracting bytes rather than lines (-c)

Use tail –f when we are running a program that continuously writes to a file, and we want to see how the file

is growing. We have to terminate this command with the interrupt key.

cut – slitting a file vertically

It is used for slitting the file vertically. head -n 5 emp.lst | tee shortlist will select the first five lines of

emp.lst and saves it to shortlist. We can cut by using -c option with a list of column numbers, delimited by a

comma (cutting columns).

cut -c 6-22,24-32 shortlist

cut -c -3,6-22,28-34,55- shortlist

The expression 55- indicates column number 55 to end of line. Similarly, -3 is the same as 1-3.

Most files don’t contain fixed length lines, so we have to cut fields rather than columns (cutting fields).

-d for the field delimiter

-f for the field list

cut -d \ | -f 2,3 shortlist | tee cutlist1

 will display the second and third columns of shortlist and saves the output in cutlist1. here | is escaped

to prevent it as pipeline character

• To print the remaining fields, we have

 cut –d \ | -f 1,4- shortlist > cutlist2

paste – pasting files

When we cut with cut, it can be pasted back with the paste command, vertically rather than horizontally. We

can view two files side by side by pasting them. In the previous topic, cut was used to create the two files

cutlist1 and cutlist2 containing two cut-out portions of the same file.

 paste cutlist1 cutlist2

We can specify one or more delimiters with -d

Unix Programming Lab Record

22

 paste -d “|” cutlist1 cutlist2

Where each field will be separated by the delimiter |. Even though paste uses at least two files for

concatenating lines, the data for one file can be supplied through the standard input.

Joining lines (-s)

Let us consider that the file address book contains the details of three persons

cat addressbook

paste -s addressbook -to print in one single line

paste -s -d ”| | \n” addressbook -are used in a circular manner

sort : ordering a file

Sorting is the ordering of data in ascending or descending sequence. The sort command orders a file and by

default, the entire line is sorted

sort shortlist

This default sorting sequence can be altered by using certain options. We can also sort one or more keys

(fileds) or use a different ordering rule.

sort options

The important sort options are:

-tchar uses delimiter char to identify fields

-k n sorts on nth field

-k m,n starts sort on mth field and ends sort on nth field

-k m.n starts sort on nth column of mth field

-u removes repeated lines

-n sorts numerically

-r reverses sort order

-f folds lowercase to equivalent uppercase

-m list merges sorted files in list

-c checks if file is sorted

-o flname places output in file flname

sort –t“|” –k 2 shortlist

 sorts the second field (name)

sort –t”|” –r –k 2 shortlist or

sort –t”|” –k 2r shortlist

 sort order can be revered with this –r option.

sort –t”|” –k 3,3 –k 2,2 shortlist

Unix Programming Lab Record

23

 sorting on secondary key is also possible as shown above.

sort –t”|” –k 5.7,5.8 shortlist

 we can also specify a character position with in a field to be the beginning of sort as shown above

(sorting on columns).

sort –n numfile

 when sort acts on numericals, strange things can happen. When we sort a file containing only

numbers, we get a curious result. This can be overridden by –n (numeric) option.

cut –d “|” –f3 emp.lst | sort –u | tee desigx.lst

Removing repeated lines can be possible using –u option as shown above. If we cut out the

designation filed from emp.lst, we can pipe it to sort to find out the unique designations that occur in the file.

Other sort options are:

sort –o sortedlist –k 3 shortlist

sort –o shortlist shortlist

sort –c shortlist

sort –t “|” –c –k 2 shortlist

sort –m foo1 foo2 foo3

uniq command – locate repeated and nonrepeated lines

 When we concatenate or merge files, we will face the problem of duplicate entries creeping in. we

saw how sort removes them with the –u option. UNIX offers a special tool to handle these lines – the uniq

command. Consider a sorted dept.lst that includes repeated lines:

cat dept.lst

displays all lines with duplicates. Where as,

uniq dept.lst

simply fetches one copy of each line and writes it to the standard output. Since uniq requires a sorted file as

input, the general procedure is to sort a file and pipe its output to uniq. The following pipeline also produces

the same output, except that the output is saved in a file:

sort dept.lst | uniq – uniqlist

Different uniq options are :

Selecting the nonrepeated lines (-u)

 cut –d “|” –f3 emp.lst | sort | uniq –u

Unix Programming Lab Record

24

Selecting the duplicate lines (-d)

 cut –d “|” –f3 emp.lst | sort | uniq –d

Counting frequency of occurrence (-c)

 cut –d “|” –f3 emp.lst | sort | uniq –c

tr command – translating characters

The tr filter manipulates the individual characters in a line. It translates characters using one or two

compact expressions.

tr options expn1 expn2 standard input

It takes input only from standard input, it doesn’t take a filename as argument. By default, it translates each

character in expression1 to its mapped counterpart in expression2. The first character in the first expression is

replaced with the first character in the second expression, and similarly for the other characters.

tr ‘|/’ ‘~-’ < emp.lst | head –n 3

exp1=‘|/’ ; exp2=‘~-’

tr “$exp1” “$exp2” < emp.lst

Changing case of text is possible from lower to upper for first three lines of the file.

head –n 3 emp.lst | tr ‘[a-z]’ ‘[A-Z]’

Different tr options are:

Deleting charecters (-d)

 tr –d ‘|/’ < emp.lst | head –n 3

Compressing multiple consecutive charecters (-s)

 tr –s ‘ ‘ < emp.lst | head –n 3

Complementing values of expression (-c)

 tr –cd ‘|/’ < emp.lst

Using ASCII octal values and escape sequences

 tr ‘|’ ‘\012’ < emp.lst | head –n 6

Unix Programming Lab Record

25

FILTERS USING REGULAR EXPRESSIONS – grep and awk

We often need to search a file for a pattern, either to see the lines containing (or not containing) it or

to have it replaced with something else. This chapter discusses two important filters that are specially suited

for these tasks – grep and sed. grep takes care of all search requirements we may have. sed goes further and

can even manipulate the individual characters in a line. In fact sed can de several things, some of then quite

well.

grep – searching for a pattern

It scans the file / input for a pattern and displays lines containing the pattern, the line numbers or

filenames where the pattern occurs. It’s a command from a special family in UNIX for handling search

requirements.

grep options pattern filename(s)

grep “sales” emp.lst

will display lines containing sales from the file emp.lst. Patterns with and without quotes is possible. It’s

generally safe to quote the pattern. Quote is mandatory when pattern involves more than one word. It returns

the prompt in case the pattern can’t be located.

grep president emp.lst

When grep is used with multiple filenames, it displays the filenames along with the output.

 grep “director” emp1.lst emp2.lst

Where it shows filename followed by the contents

grep options

grep is one of the most important UNIX commands, and we must know the options that POSIX

requires grep to support. Linux supports all of these options.

-i ignores case for matching

-v doesn’t display lines matching expression

-n displays line numbers along with lines

-c displays count of number of occurrences

-l displays list of filenames only

-e exp specifies expression with this option

-x matches pattern with entire line

-f file takes pattrens from file, one per line

-E treats pattren as an extended RE

-F matches multiple fixed strings

 grep -i ‘agarwal’ emp.lst

 grep -v ‘director’ emp.lst > otherlist

 wc -l otherlist will display 11 otherlist

Unix Programming Lab Record

26

 grep –n ‘marketing’ emp.lst

 grep –c ‘director’ emp.lst

 grep –c ‘director’ emp*.lst

 will print filenames prefixed to the line count

grep –l ‘manager’ *.lst

 will display filenames only

grep –e ‘Agarwal’ –e ‘aggarwal’ –e ‘agrawal’ emp.lst

 will print matching multiple patterns

grep –f pattern.lst emp.lst

 all the above three patterns are stored in a separate file pattern.lst

Basic Regular Expressions (BRE) – An Introduction

It is tedious to specify each pattern separately with the -e option. grep uses an expression of a different

type to match a group of similar patterns. If an expression uses meta characters, it is termed a regular

expression. Some of the characters used by regular expression are also meaningful to the shell.

BRE character subset

 The basic regular expression character subset uses an elaborate meta character set, overshadowing the

shell’s wild-cards, and can perform amazing matches.

* Zero or more occurrences

g* nothing or g, gg, ggg, etc.

. A single character

.* nothing or any number of characters

[pqr] a single character p, q or r

[c1-c2] a single character within the ASCII range represented by c1 and c2

The character class

grep supports basic regular expressions (BRE) by default and extended regular expressions (ERE)

with the –E option. A regular expression allows a group of characters enclosed within a pair of [], in which

the match is performed for a single character in the group.

grep “[aA]g[ar][ar]wal” emp.lst

A single pattern has matched two similar strings. The pattern [a-zA-Z0-9] matches a single alphanumeric

character. When we use range, make sure that the character on the left of the hyphen has a lower ASCII value

than the one on the right. Negating a class (^) (caret) can be used to negate the character class. When the

character class begins with this character, all characters other than the ones grouped in the class are matched.

The *

Unix Programming Lab Record

27

The asterisk refers to the immediately preceding character. * indicates zero or more occurrences of the

previous character.

g* nothing or g, gg, ggg, etc.

grep “[aA]gg*[ar][ar]wal” emp.lst

Notice that we don’t require to use –e option three times to get the same output!!!!!

The dot

A dot matches a single character. The shell uses ? Character to indicate that.

.* signifies any number of characters or none

grep “j.*saxena” emp.lst

Specifying Pattern Locations (^ and $)

Most of the regular expression characters are used for matching patterns, but there are two that can

match a pattern at the beginning or end of a line. Anchoring a pattern is often necessary when it can occur in

more than one place in a line, and we are interested in its occurance only at a particular location.

^ for matching at the beginning of a line

$ for matching at the end of a line

grep “^2” emp.lst

Selects lines where emp_id starting with 2

grep “7…$” emp.lst

Selects lines where emp_salary ranges between 7000 to 7999

grep “^[^2]” emp.lst

Selects lines where emp_id doesn’t start with 2

When meta characters lose their meaning

It is possible that some of these special characters actually exist as part of the text. Sometimes, we

need to escape these characters. For example, when looking for a pattern g*, we have to use \

To look for [, we use \[

To look for .*, we use \.*

Extended Regular Expression (ERE) and grep

If current version of grep doesn’t support ERE, then use egrep but without the –E option. -E option

treats pattern as an ERE.

+ matches one or more occurrences of the previous character

Unix Programming Lab Record

28

? Matches zero or one occurrence of the previous character

b+ matches b, bb, bbb, etc.

b? matches either a single instance of b or nothing

These characters restrict the scope of match as compared to the *

grep –E “[aA]gg?arwal” emp.lst

?include +<stdio.h>

The ERE set

ch+ matches one or more occurrences of character ch

ch? Matches zero or one occurrence of character ch

exp1|exp2 matches exp1 or exp2

(x1|x2)x3 matches x1x3 or x2x3

Matching multiple patterns (|, (and))

grep –E ‘sengupta|dasgupta’ emp.lst

We can locate both without using –e option twice, or

grep –E ‘(sen|das)gupta’ emp.lst

Unix Programming Lab Record

29

awk

awk is a programmable, pattern-matching, and processing tool available in UNIX. It works equally well with text and

numbers. It derives its name from the first letter of the last name of its three authors namely Alfred V. Aho, Peter J.

Weinberger and Brian W. Kernighan.

awk is not just a command, but a programming language too. In other words, awk utility is a pattern scanning and

processing language. It searches one or more files to see if they contain lines that match specified patterns and then

perform associated actions, such as writing the line to the standard output or incrementing a counter each time it finds a

match.

Syntax:

 awk option ‘selection_criteria {action}’ file(s)

Here, selection_criteria filters input and selects lines for the action component to act upon. The selection_criteria is

enclosed within single quotes and the action within the curly braces. Both the selection_criteria and action forms an awk

program.

Example: $ awk ‘/manager/ { print }’ emp.lst

Output:

[priyanka@localhost awk]$ cat emp.dbf

0001|Sandeep Agarwalla |Education |Student |5000

0005|Sanjay Agarwal |Education |Student |5000

0007|Deepak Agarwal |Businessman| | --

0054|Devadatta Bhattacharya|Education |Teacher |6500

0018|Tamali Neogi |Education |Teacher |5500

0981|Sukla Bhattacharya |Education |Reception |4500

0221|Dilip Roy |Sales |Clerk |2500

0111|Hamanta Mukherji |Purchase |Manager |6400

2000|Mainak Roy |Purchase |Dy Manager |5500

0987|Arunava Sharkhel |Sales |Maneger |4500

0911|Bikash Agarwal |Sales |Dy Maneger |4500

0211|Arunangshu Sarkar |Hardware |Student |4500

0101|Anish Basu |Software |Student |5200

0102|Arnab Roy |Marketing |Manager |4700

1111|Kaustav Choudhury |Marketing |Dy Manager |4500

1211|Banani Ghose |Education |Student |8000

1288|Anirban Mahata |Hardware |Student |3000

1200|Angshuman Chatterjee |Marketing |General Manager |7500

2000|Anshumita Das |Sales | General Manager|3000

[priyanka@localhost awk]$ awk '/Education/ {print}' emp.dbf

9876 Jai Sharma Manager Productions

2356 Rohit Manager Sales

5683 Rakesh Manager Marketing

Unix Programming Lab Record

30

0001|Sandeep Agarwalla |Education |Student |5000

0005|Sanjay Agarwal |Education |Student |5000

0054|Devadatta Bhattacharya|Education |Teacher |6500

0018|Tamali Neogi |Education |Teacher |5500

0981|Sukla Bhattacharya |Education |Reception |4500

1211|Banani Ghose |Education |Student |8000

[priyanka@localhost awk]$ awk -F "|" '/Sales/ {print $2,$3,$5}' emp.dbf

Dilip Roy Sales 2500

Arunava Sharkhel Sales 4500

Bikash Agarwal Sales 4500

Anshumita Das Sales 3000

[priyanka@localhost awk]$ awk -F "|" '/Sales/ {print $2"|",$3"|",$5}' emp.dbf

Dilip Roy | Sales | 2500

Arunava Sharkhel | Sales | 4500

Bikash Agarwal | Sales | 4500

Anshumita Das | Sales | 3000

[priyanka@localhost awk]$ awk -F "|" 'NR == 3 || NR == 6 { print NR,$2,$3,$5}' emp.dbf

3 Deepak Agarwal Businessman --

6 Sukla Bhattacharya Education 4500

[priyanka@localhost awk]$ awk -F "|" 'NR == 3 , NR == 6 { print NR,$2,$3,$5}' emp.dbf

3 Deepak Agarwal Businessman --

4 Devadatta Bhattacharya Education 6500

5 Tamali Neogi Education 5500

6 Sukla Bhattacharya Education 4500

[priyanka@localhost awk]$ awk -F "|" '$3 == "Education " || $3=="Sales "' emp.dbf

0001|Sandeep Agarwalla |Education |Student |5000

0005|Sanjay Agarwal |Education |Student |5000

0054|Devadatta Bhattacharya|Education |Teacher |6500

0018|Tamali Neogi |Education |Teacher |5500

0981|Sukla Bhattacharya |Education |Reception |4500

0221|Dilip Roy |Sales |Clerk |2500

0987|Arunava Sharkhel |Sales |Maneger |4500

0911|Bikash Agarwal |Sales |Dy Maneger |4500

1211|Banani Ghose |Education |Student |8000

2000|Anshumita Das |Sales | General Manager|3000

Note : Spaces does matter in searching expressions.

1. remove only files:

ls -l * | grep -v drwx | awk '{print "rm "$9}' | sh

or with awk alone:

ls -l|awk '$1!~/^drwx/{print $9}'|xargs rm

Be careful when trying this out in your home directory. We remove files!

2. remove only directories

ls -l | grep '^d' | awk '{print "rm -r "$9}' | sh or

ls -p | grep /$ | wk '{print "rm -r "$1}'

Unix Programming Lab Record

31

How to Run Shell Scripts

There are two ways you can execute your shell scripts. Once you have created a script file:

Method 1

Pass the file as an argument to the shell that you want to interpret your script.

Step 1 : create the script using vi, ex or ed

For example, the script file show has the following lines

echo Here is the date and time

date

Step 2 : To run the script, pass the filename as an argument to the sh (shell)

$ sh show

Here is the date and time

Sat jun 03 13:40:15 PST 2006

Method 2:

Make your script executable using the chmod command.

When we create a file, by default it is created with read and write permission turned on and execute

permission turned off. A file can be made executable using chmod.

Step 1 : create the script using vi, ex or ed

For example, the script file show has the following lines

echo Here is the date and time

date

Step 2 : Make the file executable

 $ chmod u+x script_file

 $ chmod u+x show

Unix Programming Lab Record

32

Q)Write a shell script to find the EVEN & ODD numbers in a given list of

numbers?

clear

echo -e "Enter how many inputs you want :- \c"

read a

c=1

while test $c -le $a;do

 echo -e "Enter no $c :- \c"

 read b

 if test `expr $b % 2` -eq 0;then

 echo $b>>e

 else

 echo $b>>o

 fi

 c=`expr $c + 1`

done

echo -e "\nList of Odd numbers"

cat o

echo -e "\nList of Even numbers"

cat e

rm e o

Output

Enter how many inputs you want :- 8

Enter no 1 :- 32

Enter no 2 :- 9

Enter no 3 :- 14

Enter no 4 :- 2

Enter no 5 :- 5

Enter no 6 :- 17

Enter no 7 :- 11

Enter no 8 :- 3

List of Odd numbers

9

5

17

11

3

List of Even numbers

32

14

2

Unix Programming Lab Record

33

Q)Write a MENU driven program in the following :-

1. Contents of the \etc\passwd.

2. List of users who have currently logged in.

3. Print working directory

4. Exit

ch=0

while : ; do

 clear

 echo -e "1. Contents of /etc/passwd

2. List of current users who has logged in

3. Path and name of working directory

4. Exit\n

Enter your choice (1-4) : \c"

 read ch

 case $ch in

 1) cat /etc/passwd

 echo -e "\nPress any key to continue...........\c"

 read w;;

 2) who -H

 echo -e "\nPress any key to continue...........\c"

 read w;;

 3) pwd

 echo -e "\nPress any key to continue...........\c"

 read w;;

 4) break;;

 *) echo "Invalid input!!!!!!!!!!!"

 echo -e "\nPress any key to continue..........

 read w;;

 esac

done

Unix Programming Lab Record

34

Output

1. Contents of /etc/passwd

2. List of current users who has logged in

3. Path and name of working directory

4. Exit

Enter your choice (1-4) : 1

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:

daemon:x:2:2:daemon:/sbin:

adm:x:3:4:adm:/var/adm:

lp:x:4:7:lp:/var/spool/lpd:

sync:x:5:0:sync:/sbin:/bin/sync

shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

halt:x:7:0:halt:/sbin:/sbin/halt

mail:x:8:12:mail:/var/spool/mail:

news:x:9:13:news:/var/spool/news:

uucp:x:10:14:uucp:/var/spool/uucp:

operator:x:11:0:operator:/root:

games:x:12:100:games:/usr/games:

gopher:x:13:30:gopher:/usr/lib/gopher-data:

ftp:x:14:50:FTP User:/var/ftp:

nobody:x:99:99:Nobody:/:

named:x:25:25:Named:/var/named:/bin/false

xfs:x:43:43:X Font Server:/etc/X11/fs:/bin/false

gdm:x:42:42::/home/gdm:/bin/bash

rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/bin/false

rpc:x:32:32:Portmapper RPC user:/:/bin/false

mailnull:x:47:47::/var/spool/mqueue:/dev/null

jk:x:500:500:Jiban Kumar Sahu:/home/jk:/bin/bash

sawan:x:501:500:Sawan Kumar:/home/sawan:/bin/bash

subarna:x:502:501:subarna saha:/home/subarna:/bin/bash

tirtha:x:503:502:tirtha roy chaudhury:/home/tirtha:/bin/bash

sandeep:x:504:502:sandeep agarwalla:/home/sandeep:/bin/bash

Press any key to continue...........

1. Contents of /etc/passwd

2. List of current users who has logged in

3. Path and name of working directory

4. Exit

Enter your choice (1-4) : 2

USER LINE LOGIN-TIME FROM

sandeep pts/0 May 22 09:30

sandeep pts/2 May 22 08:33

Unix Programming Lab Record

35

Press any key to continue...........

1. Contents of /etc/passwd

2. List of current users who has logged in

3. Path and name of working directory

4. Exit

Enter your choice (1-4) : 3

/home/sandeep

Press any key to continue...........

1. Contents of /etc/passwd

2. List of current users who has logged in

3. Path and name of working directory

4. Exit

Enter your choice (1-4) : 7

Invalid input!!!!!!!!!!!

Press any key to continue...........

1. Contents of /etc/passwd

2. List of current users who has logged in

3. Path and name of working directory

4. Exit

Enter your choice (1-4) : 4

[sandeep@server sandeep]$

Unix Programming Lab Record

36

Q)Write a shell script that takes a command line argument that inputs a number

n and a word. The word would then be printed “n” times (one word per line).

clear

c=1

echo -e " Printing words $1 times\n\n"

while test $c -le $1;do

 echo $2

 c=`expr $c + 1`

done

Output

[sandeep@server sandeep]$ sh string 10 UNIX

 Printing words 10 times

UNIX

UNIX

UNIX

UNIX

UNIX

UNIX

UNIX

UNIX

UNIX

UNIX

Unix Programming Lab Record

37

Q)Write a shell script to print the multiplication table of a given number?

clear

echo -e "Enter the number for multiplication table :- \c"

read n

echo

c=1

while test $c -le 20;do

 if test $c -lt 10; then

 echo "$n X $c = `expr $n * $c`"

 else

 echo "$n X $c = `expr $n * $c`"

 fi

 c=`expr $c + 1`

done

Output

Enter the number for multiplication table :- 18

18 X 1 = 18

18 X 2 = 36

18 X 3 = 54

18 X 4 = 72

18 X 5 = 90

18 X 6 = 108

18 X 7 = 126

18 X 8 = 144

18 X 9 = 162

18 X 10 = 180

18 X 11 = 198

18 X 12 = 216

18 X 13 = 234

18 X 14 = 252

18 X 15 = 270

18 X 16 = 288

18 X 17 = 306

18 X 18 = 324

18 X 19 = 342

18 X 20 = 360

Unix Programming Lab Record

38

Q)Write a shell script which executed as soon as the user login to his/her account

displaying the message “Good Morning” || “Good Afternoon” || “Good Evening”

depending upon the time at which the user login?

clear

echo -e "Now the time is : - `date +"%T"`"

hour=`date +"%T" | cut -d ":" -f1`

if [$hour -lt 12] && [$hour -ge 0];then

 echo "Good Morning !"

elif [$hour -ge 12] && [$hour -lt 16];then

 echo "Good Afternoon !"

else

 echo "Good Evening !"

fi

The Output is shown below shows the time the user as soon as the user logs to his/her account.The shell script

above is written in a file named time and placed in the file .bash_profile which gets executed when the user

login.

Now the time is : - 17:22:48

Good Evening !

[sandeep@server sandeep]$

Unix Programming Lab Record

39

Q)Write a shell script to convert the content of file to upper case. The file name

should be given as argument from command line?

clear

if test -f $1 ; then

 tr '[a-z]' '[A-Z]' < $1 > temp

 mv temp $1

fi

Output

Contents before program executed

[sandeep@server sandeep]$ cat ff

the quick brown fox jumps over the lazy dog

the quick brown fox jumps over the lazy dog

Contents after program executed

[sandeep@server sandeep]$ cat ff

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

Unix Programming Lab Record

40

Q)Write a shell script whick will receive any name of file as argument. The script

should check whether argument supplied is a file or directory. If the argument is

a file then it should print the number of lines, words and character present in the

file?

clear

if test -f $1 ; then

echo "Number of lines `wc -l <$1`"

echo "Number of words `wc -w <$1` "

echo "Number of character `wc -c <$1` "

elif test -d $1;then

echo "This is a directory file"

else

 echo "'$1' File is not existing !"

fi

Output

The contents of the file

[sandeep@server sandeep]$ cat l1

the quick

brown fox

jumps over thje lazy

dpog

The program execution

[sandeep@server sandeep]$ sh dd l1

Number of lines 4

Number of words 9

Number of character 46

Unix Programming Lab Record

41

Q)Write a shell script to rename all the files in the directory as extension .sh.

Directories in that directory do not get renamed.

for file in * ; do

 x=`ls -ld $file | cut -c1`

 if test $x != 'd' ; then

 mv $file ${file}.sh

 fi

done

Ouput

The contents of the directory

[sandeep@server sandeep]$ ls

capital dd ddcclear devc f1 l1 string

chext ddc delete dir1 fact menu tm

contents ddcas dev even.pif ff mul

The program execution

[sandeep@server sandeep]$ sh chext

The contents of directory after execution

[sandeep@server sandeep]$ ls

capital.sh ddc.sh dev.sh f1.sh menu.sh

chext.sh ddcas.sh devc.sh fact.sh mul.sh

contents.sh ddcclear.sh dir1 ff.sh string.sh

dd.sh delete.sh even.sh l1.sh tm.sh

*dir1 is a directory which doesn’t gets renamed.

Unix Programming Lab Record

42

Program to find the greatest three numbers

clear

echo -e "Enter first variable : \c"

read a

echo -e "Enter second variable : \c"

read b

echo -e "Enter third variable : \c"

read c

if test $a -gt $b ; then

 if test $a -gt $c ; then

 echo " `echo $a ` is maximum "

 else

 echo " `echo $c ` is maximum "

 fi

else

 if test $b -gt $c ; then

 echo " `echo $b ` is maximum "

 else

 echo " `echo $c ` is maximum "

 fi

fi

Unix Programming Lab Record

43

Program to find the year entered is leap year or not?

clear

echo -e "Enter an year : \c";

read year

if test $year -gt 0 ; then

 x=`expr $year % 4`

 y=`expr $year % 100`

 z=`expr $year % 400`

 if test $x -eq 0

 then

 if test $y -eq 0

 then

 if test $z -eq 0

 then

 cal 2 $year

 else

 echo "`echo $year` is not a leap-year"

 fi

 else

 cal 2 $year

 fi

 else

 echo "`echo $year` is not a leap-year"

 fi

else

 echo "Bad input!!!!!!!!!!!!!!!!!!"

fi

Unix Programming Lab Record

44

Write program to test whether a given number is prime or not?

clear

echo -e "Enter a number = : \c"

read n

q=`expr $n - 1`

x=2

while test $x -le $q ; do

 m=`expr $n % $x`

 if test $m -eq 0 ; then

 echo "The number $n is not prime"

 break

 fi

 x=`expr $x + 1`

done

if test $m -ne 0 ; then

 echo "The number $n is prime"

fi

Unix Programming Lab Record

45

Program to find the factorial of a number?

clear

echo -e "Enter a number : \c"

read n

x=1

s=1

while test $x -le $n ; do

 s=`expr $s * $x`

 x=`expr $x + 1`

done

echo "The factorial of $n = $s"

Write a program to print the fibbonacii sereies?

clear

echo -e "Enter number of terms = \c"

read n

p=0

q=1

echo "$p"

echo "$q"

m=`expr $n - 2`

x=1

while test $x -le $m ; do

 s=`expr $p + $q`

 echo "$s"

 p=`expr $q`

 q=`expr $s`

 x=`expr $x + 1`

done

Unix Programming Lab Record

46

Write a script which receives two file names as arguments and check if their

contents are same.

clear

if test $# -eq 2;then

 if test -f $1;then

 if test -f $2;then

 sort $1 > tp1

 sort $2 > tp2

 d=`comm -3 tp1 tp2 | wc -c`

 if [$d -eq 0];then

 echo " Files are equal"

 else

 echo "Files are not equal"

 fi

 else

 echo "$2 is not a file"

 fi

 else

 echo "$1 is not a file"

 fi

else

 echo "Invalid arguments"

fi

Output

Contents before program executed

[root@localhost Sandeep]# cat temp1

the quick brown fox jumps over the lazy dog

the quick brown fox jumps over the lazy dog

[root@localhost Sandeep]# cat temp2

I am learning unix well.I love to do shell programs.

All the students of MCA love the unix teacher.

Contents after program executed

[root@localhost Sandeep]# sh compare.sh temp1 temp2

Files are not equal

[root@localhost Sandeep]# sh compare.sh temp1 temp1

Files are equal

[root@localhost Sandeep]# sh compare.sh f1 temp1

f1 is not a file

Unix Programming Lab Record

47

Program To Illustrate Fork System Call

#include<stdio.h>

main()

{

 int childid;

 int parentid;

 int processid;

 processid=getpid();

 childid=fork();

 if(childid<0)

 {

 printf("Fork Failed \n");

 exit(1);

 }

 else if(childid==0)

 {

printf("Iam the Child:\n\t\t Childid= %d \t Prentid=%dProcessid=%d \n “,

ldid,getppid(),getpid());

 }

 else

 {

printf("Iam the Parent:\n\t\t Childid=%d Parentid=%d

Processid=%d\n",childid,getppid(),getpid());

 }

 }

Unix Programming Lab Record

48

Program to implement signal using sigint

#include<stdio.h>

#include<signal.h>

void abc();

main()

{

signal(SIGINT,abc);

while(1)

 {

 printf("hello worldf\n");

 sleep(1);

 }

}

void abc()

{

printf("\n you have a signal");

}

Unix Programming Lab Record

49

Program to implement signal using alarm signal

#include<stdio.h>

#include<signal.h>

#include<stdlib.h>

main()

{

 void abc();

 signal(SIGALRM,abc);

while(1)

 {

 alarm(60);/*60 means 60 seconds */

 pause();

 }

}

void abc()

{

system("cat f1");

/*f1 is the where all the appointments are written*/

return;

}

Unix Programming Lab Record

50

Write a program to create a child process. The parent process takes the name of

a file and sends it to the child process and the child process finds the number of

lines, words and the characters which it returns to the parent process. The parent

process then displays them on the screen. Use pipes for IPC.

#include<stdio.h>

#include<conio.h>

main()

{

 File *fp;

int p1[2],p2[2].pid,c=0,I,nol,now,noc;

char flnm[30],rcvflnm[30],out[80],ch,in[80];

pipe(p1);

pipe(p2);

pid=fork();

/* parent */

if(pid!=0)

{

 close(p1[1]);

close(p2[0]);

 Printf(“enter the name of the file:”);

Scanf(“%s”,flnm);

Write(p2[1],flnm,20);

read(p1[0],in,80);

Printf(“%s”,in);

Printf(“\n”);

}

/*child*/

else

{

close(p1[0]);

close(p2[1]);

read(p2[0],rcvflnm,30);

fp=fopen(rcvflnm,”r”);

 if(fp==NULL)

{

printf(“cannot open file”);

exit(0);

}

 nol=0; /*number of lines*/

 now=0; /*number of words*/

 noc=0; /*number of chracters*/

 while(1)

{

Unix Programming Lab Record

51

 ch=fgetc(fp);

if(ch==EOF)

break;

 noc++;

if(ch==` ` ||ch == `\t`)

now++;

if(ch==`\n`)

nol++;

}

printf(out,”no.of chars”%d, no.of words:%d,no.of lines:%d “,noc,now,nol);

write(p1[1],out,80);

fclose(fp);

 }

 exit(0);

 }

Unix Programming Lab Record

52

Write a Client server program to send message from client to server using FIFOS

(Names Pipes)

/* Client (Write)*/

#include<fcntl.h>

#include<stdio.h>

#include<errno.h>

#include<string.h>

main(int argc, char *argv[])

{

 int fd,j,nwrite;

 char msgbuf[64];

 if((fd=open("myfifo",O_WRONLY))<0)

 perror("fifo open failed");

 for(j=1;j<argc;j++)

 {

 strcpy(msgbuf,argv[j]);

 if((nwrite=write(fd,msgbuf,64))<=0)

 perror("message write failed");

 }

}

/* Server (Read) , Execute Read first*/

#include<fcntl.h>

#include<stdio.h>

main()

{

 int fd;

 char msgbuf[64];

 if(mknod("myfifo",010666,0)<0)

 perror("myfifo failed");

 if((fd=open("myfifo",O_RDWR))<0)

 perror("Fifo open failed");

 for(;;)

 {

 if(read(fd,msgbuf,64)>0)

 printf("Message received %s\n",msgbuf);

 }

}

Unix Programming Lab Record

53

Program to create Message Queues.

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/msg.h>

#include<stdio.h>

main()

{

 int i,msqid;

 key_t key=11;

 msqid=msgget(key,IPC_CREAT|IPC_EXCL);

 if(msqid<0)

 perror("Msgget failed");

 else

 printf("MQ created with key %d\n",msqid);

}

Program to create Message Queues with permission.

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/msg.h>

#include<stdio.h>

main()

{

 int i,msqid;

 key_t key=15;

 msqid=msgget(key,IPC_CREAT|0644);

 if(msqid<0)

 perror("Msgget failed");

 else

 printf("MQ created with key %d\n",msqid);

}

Unix Programming Lab Record

54

Program to create Mutiple Message Queues.

#include<sys/ipc.h>

#include<sys/msg.h>

#include<stdio.h>

main()

{

 int msqid;

 key_t i;

 for(i=21;i<50;i++)

 {

 msqid=msgget(i,IPC_CREAT|0666);

 if(msqid<0)

 perror("Msgget failed");

 else

 printf("MQ created with key %d\n",msqid);

 }

}

Unix Programming Lab Record

55

Program to create Message Queues to make communication between a child and

a parent.

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/msg.h>

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

main()

{

 int qid,len;

 struct

 {

 long mtype;

 char mtext[225];

 }message,buff;

 qid=msgget((key_t)11,IPC_CREAT|0666);

 if(qid==-1)

 {

 perror("msgget failed");

 exit(1);

 }

 strcpy(message.mtext,"Hello World\n");

 message.mtype=1;

 len=strlen(message.mtext);

 if(msgsnd(qid,&message,len,0)==-1)

 {

 perror("msgsnd failed");

 exit(1);

 }

 if(msgrcv(qid,&buff,len,0,0)==-1)

 {

 perror("msgrcv failed");

 exit(1);

 }

 printf("Message received %s \n",buff.mtext);

}

Unix Programming Lab Record

56

Program to create Message Queues to make communication between two

processes.

/* Process 1 */

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/msg.h>

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

main()

{

 int qid,len;

 struct

 {

 long mtype;

 char mtext[225];

 }message,buff;

 qid=msgget((key_t)15,IPC_CREAT|0666);

 if(qid==-1)

 {

 perror("msgget failed");

 exit(1);

 }

 strcpy(message.mtext,"GOOD MORNING\n");

 message.mtype=1;

 if(msgsnd(qid,&message,21,0)==-1)

 {

 perror("msgsnd failed");

 exit(1);

 }

 strcpy(message.mtext,"GOOD AFTERNOON\n");

 message.mtype=2;

 if(msgsnd(qid,&message,21,0)==-1)

 {

 perror("msgsnd failed");

 exit(1);

 }

 strcpy(message.mtext,"GOOD EVENING\n");

 message.mtype=3;

 if(msgsnd(qid,&message,21,0)==-1)

 {

 perror("msgsnd failed");

 exit(1);

 }

 printf("Message received %s \n",buff.mtext);

}

/* Process 2 */

Unix Programming Lab Record

57

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/msg.h>

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

main()

{

 int qid,i;

 struct

 {

 long mtype;

 char mtext[225];

 }buff;

 qid=msgget((key_t)15,IPC_CREAT|0666);

 if(qid==-1)

 {

 perror("msgget failed");

 exit(1);

 }

 for(i=0;i<3;i++)

 {

 if(msgrcv(qid,&buff,21,0,0)==-1)

 {

 perror("Msgrcv failed");

 exit(1);

 }

 printf("Message received %s \n",buff.mtext);

 }

}

Unix Programming Lab Record

58

Program to create 25 semaphores

#include<stdio.h>

#include<sys/types.h>

#include<sys/ipc.h>

#include<stdlib.h>

main()

{

 int semid;

 semid=semget(0x20,25,0666|IPC_CREAT);

 if(semid>0)

 printf("1st semget suceeded\n");

 else

 {

 perror("1st Senget");

 exit(0);

 }

}

Program to get the value of Semaphore

#include<stdio.h>

#include<sys/types.h>

#include<sys/sem.h>

#include<errno.h>

main()

{

 int semid,retval;

 semid=semget(0x20,1,0666|IPC_CREAT);

 retval=semctl(semid,0,GETVAL,0);

 printf("Value returned id %d\n",retval);

}

Unix Programming Lab Record

59

Program to set and get the value of Semaphore

#include<stdio.h>

#include<sys/types.h>

#include<sys/sem.h>

#include<errno.h>

main()

{

 int semid,retval;

 semid=semget(0x30,1,0666|IPC_CREAT);

 semctl(semid,0,SETVAL,1);

 retval=semctl(semid,0,GETVAL,0);

 printf("Value of the semaphores after setting is %d \n",retval);

 semctl(semid,0,SETVAL,2);

 retval=semctl(semid,0,GETVAL,0);

 printf("Value of the semaphores after setting is %d \n",retval);

}

Unix Programming Lab Record

60

Program to create binary semaphore

#include<stdio.h>

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/sem.h>

main()

{

 int semid,pid;

 struct sembuf sop;

 semid=semget(0x30,1,IPC_CREAT|0666);

 pid=fork();

 if(pid==0)

 {

 sleep(10);

 printf("Child before semop\n");

 sop.sem_num=0;

 sop.sem_op=0;

 sop.sem_flg=0;

 semop(semid,&sop,1);

 printf("Child over\n");

 }

 else

 {

 printf("Parent before 1st semctl\n");

 semctl(semid,0,SETVAL,1);

 printf("Parent Sleeping\n");

 sleep(15);

 printf("Parent before second semctl \n");

 semctl(semid,0,SETVAL,0);

 printf("Parent Over");

 }

}

Unix Programming Lab Record

61

Write a Program to create a Shared Memory, Create a child process to to

reading and writing from shared memory.

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/shm.h>

main()

{

 char *ptr;

 int shmid,pid;

shmid=shmget(key_t)1,20,IPC_CREAT|0666)

ptr=(char *)shmat(shmid,(char *)0,0);

pid=fork();

if(pid==0)

 strcpy(ptr,"Hello World");

else

{

 wait(0);

 parent("Parent reads %s\n",ptr);

}

}

Unix Programming Lab Record

62

Client Server Program for Connection Oriented Network using Sockets

/* CLIENT */

#include<stdio.h>

#include<sys/socket.h>

#include<arpa/inet.h>

#include<netinet/in.h>

#include<sys/types.h>

#include<stdlib.h>

#include<string.h>

#define MAX 80

main(int argc, char *argv[])

{

 int sockfd,s,i,n;

 struct sockaddr_in serv_addr;

 char buff1[MAX],buff2[MAX];

 sockfd=socket(AF_INET,SOCK_STREAM,0);

 bzero((char *)&serv_addr,sizeof(serv_addr));

 serv_addr.sin_family=AF_INET;

 serv_addr.sin_addr.s_addr=inet_addr("192.168.1.1");

 serv_addr.sin_port=htons(atoi(argv[1]));

 s=connect(sockfd,(struct sockaddr *) & serv_addr,sizeof(serv_addr));

 if(s<0)

 {

 printf("Error\n");

 exit(1);

 }

 for(;;)

 {

 write(1,"Enter Message:",15);

 n=read(0,buff1,MAX);

 send(sockfd,buff1,n,0);

 n=recv(sockfd,buff2,20,0);

 write(1,"Client received",18);

 write(1,buff2,n);

 }

 close(sockfd);

 exit(0);

}

/*SERVER*/

#include<stdio.h>

#include<sys/socket.h>

#include<arpa/inet.h>

Unix Programming Lab Record

63

#include<netinet/in.h>

#include<sys/types.h>

#include<stdlib.h>

#include<string.h>

main(int argc, char *argv[])

{

 int sockfd,newsockfd,n,i,cli_len,pid,MAX=80;

 struct sockaddr_in serv_addr,cli_addr;

 char buff[MAX];

 sockfd=socket(AF_INET,SOCK_STREAM,0);

 bzero((char *)&serv_addr,sizeof(serv_addr));

 serv_addr.sin_family=AF_INET;

 serv_addr.sin_addr.s_addr=htonl(INADDR_ANY);

 serv_addr.sin_port=htons(atoi(argv[1]));

 bind(sockfd,(struct sockaddr*)& serv_addr,sizeof(serv_addr));

 listen(sockfd,5);

 printf("server is waiting....\n");

 for(;;)

 {

 cli_len=sizeof(cli_addr);

 newsockfd=accept(sockfd,(struct sockaddr*)& cli_addr,&cli_len);

 if(newsockfd<0)

 {

 write(1,"server!....accept error:\n",24);

 }

 pid=fork();

 if(pid==0)

 {

 close(sockfd);

 for(i=0;i<10;i++)

 {

 write(1,"\nserver recived:",18);

 n=recv(newsockfd,buff,MAX,0);

 write(1,buff,n);

 write(1,"\nEnter Message:",15);

 read(0,buff,MAX);

 send(newsockfd,buff,MAX,0);

 }

 close(newsockfd);

 exit(0);

 }

 }

}

Client Server Program for Connectionless Network using Sockets

/*CLIENT */

#include<stdio.h>

#include<sys/types.h>

#include<sys/socket.h>

#include<netinet/in.h>

Unix Programming Lab Record

64

#include<netdb.h>

short portno;

int main(int argc,char *argv[])

{

int sockfd,numbytes,addr_len;

 struct sockaddr_in servaddr,cliaddr;

 char buff1[100];

 if(argc!=4)

 { printf("usage:client<portno><hostname><message>\”);

 exit(1);

 }

 if((sockfd=socket(AF_INET,SOCK_DGRAM,0))=-1)

{

printf("server socket");

exit(1);

}

cliaddr.sin_family=AF_INET;

cliaddr.sin_port=htons(0);

cliaddr.sin_addr.s_addr=htonl(0l);

if(bind(sockfd,(struct sockaddr*)&cliaddr,sizeof(struct sockaddr))=-1)

{

 perror("bind error");

 exit(1);

}

portno=atoi(argv[1]);

servaddr.sin_family=AF_INET;

servaddr.sin_port=htons(portno);

servaddr.sin_addr.s_addr=inet_addr(argv[2]);

numbytes=sendto(sockfd,argv[3],strlen(argv[3]),0,(struct sockaddr*)&servaddr,sizeof(servaddr));

if(numbytes<0)

{ printf("\n client:send to error\n");

exit(1);

}

printf("talker:\n");

printf("send %d number of bytes to %s \n",numbytes, net_ntoa(servaddr.sin_addr));

exit(0);

}

/*SERVER*/

#include<stdio.h>

#include<sys/types.h>

#include<sys/socket.h>

#include<netinet/in.h>

short portno;

int main(int argc,char *argv[])

{

 int sockfd,numbytes,addr_len;

 struct sockaddr_in servaddr,cliaddr;

Unix Programming Lab Record

65

 char buff1[100];

 if(argc!=2)

 {

 printf("usage:sever<portno>");

 exit(1);

 }

if((sockfd=socket(AF_INET,SOCK_DGRAM,0))==-1)

{

 printf("server socket");

 exit(1);

}

portno=atoi(argv[1]);

servaddr.sin_family=AF-INET;

servaddr.sin_port=htons(portno);

servaddr.sin_addr.s_addr=htonl(INADDR_ANY);

if(bind(sockfd,(struct sockaddr*)&servaddr,sizeof(struct sockaddr))<0)

{

perror("bind error");

exit(1);

}

addr_len=sizeof(cliaddr);

if((numbytes=recvfrom(sockfd,buf,sizeof(buff),0,(struct sockaddr*)&cliaddr,&(addr_len)))<0)

{

perror("recvfrom");

exit(1);

}

printf("listener:\n");

printf("go packet from %s\n",inet_ntoa(cliaddr.sin_addr));

printf("\npacket is %d bytes long \n",numbytes);

printf("packet contains:%s \n",buff);

exit(0);

}

Unix Programming Lab Record

66

SOCKET PROGRAM TO PERFORM TCP TIME CLIENT

#include<stdio.h>

#include<sys/types.h>

#include<sys/socket.h>

#include<netinet/in.h>

short portno;

main(int argc,char* argv[])

{

int sock,i;

int read_frm_stdin,read_frm_sock;

char buffer[512];

struct sockaddr_in servaddr,cliaddr;

if(argc!=3)

{

printf("CLIENT:Usage: client<portno><server_name>\n");

exit(1);

}

if((sock=socket(AF_INET,SOCK_STREAM,0))<0)

{

perror("CLIENT: socket");

exit(1);

}

servaddr.sin_family=AF_INET;

portno=atoi(argv[1]);

servaddr.sin_port=htons(portno);

sevaddr.sin_addr.s_addr=inet_addr(argv[2]);

if(connect(sock,(struct sockaddr*)&servaddr,sizeof(servaddr))<0)

{

perror("CLIENT: connect");

exit(1);

}

read_frm_sock=read(sock,buffer,sizeof(bufffer));

if(read_frm_sock<0)

{

perror("CLIENT: read sock");

exit(1);

}

/*writing on to the standard output*/

if(write(1,buffer,read_frm_sock)!=read_frm_sock)

{

perror("write stdout");

exit(1);

}

exit(0);

}

SOCKET PROGRAM TO PERFORM TCP TIME SERVER

#include<stdio.h>

Unix Programming Lab Record

67

#include<time.h>

#include<string.h>

#include<sys/types.h>

#include<sys/socket.h>

#include<netinet/in.h>

short portno;

main(int argc,char *argv[])

{ int sockmain,cli,i;

char buffer[512];

struct sockaddr_in servaddr,cliaddr;

long t;

char *st;

if(argc!=2)

{ printf("USAGE:server<portno>\n");

exit(1);

}

if((sockmain=socket(AF_INET,SOCK_STREAM,0))<0)

{ perror("socket");

exit(1);

}

servaddr.sin_family=AF_INET;

servaddr.sin_port=htons(atoi(argv[1]));

servaddr.sin_addr.s_addr=htonl(0L);

if(bind(sockmain,(struct sockaddr *)&servaddr,sizeof(servaddr))<0)

{ perror("bind");

exit(1);

}

if(listen(sockmain,5)<0)

{ perror("listen"); exit(1);

}

for(;;)

{ i=sizeof(cliaddr);

if((sockcli=accept(sockmain,(struct sockaddr *)&cliaddr,&i))<0)

{ perror("accept"); exit(1);

}

t=time(&t);

st=(char*)ctime(&t);

strcpy(buffer,st);

i=strlen(st);

if(write(sockcliaddr,buffer,i)!=i)

{ perror("write socket");

exit(1);

}

}

}

PHP PROGRAMS

/* Finding Largest of two numbers */

<?php

print("Enter 1st number :");

Unix Programming Lab Record

68

$i=fgets(STDIN);

print("Enter 2nd number:");

$j=fgets(STDIN);

if($i>$j)

 print("Fist");

else

 print("Second");

?>

/* Sum of two numbers */

<?php

printf("Hello\n");

$i=fgets(STDIN);

$j=fgets(STDIN);

$sum=$i + $j;

echo("Enter a number :$sum");

?>

Eletricity Bill Calculation

 0 – 100 units Rs2/- per unit

 101 – 200 units Rs3/- per unit

 201 – 500 units Rs5/- per unit

 >500 units Rs7/- per unit

<?php

print("Enter no of units ");

$n=fgets(STDIN);

if($n<=100)

{ $t=$n*2;

}

elseif($n<=200)

{ $t=200 + ($n – 100)*3;

}

elseif($n<=500)

{ $t=500 + ($n – 200)*5;

}

else

{

$t=2000 + ($n – 200)*7;

}

print("total charges =$t");

print("\n");

?>

Unix Programming Lab Record

69

/* Switch case program */

<?php

print(" 1. Addition of two number\n");

print(" 2. Subtraction \n");

print(" 3. Factorial of number \n");

print("\n\t\tEnter your option");

$n=fgets(STDIN);

switch($n)

{

 case 1: print("Enter first number : ");

 $x1=fgets(STDIN);

 print("Enter second number : ");

 $x2=fgets(STDIN);

 $sum=$x1 + $x2;

 print("\n The sum = $sum");

 break;

 case 2: print("Enter first number : ");

 $x1=fgets(STDIN);

 print("Enter second number : ");

 $x2=fgets(STDIN);

 $sub=$x1 - $x2;

 print("\n The sub = $sub");

 break;

 case 3: print("Enter first number : ");

 $x1=fgets(STDIN);

 $f=1;

 for($i=1;$i<=$x1;$i++)

 $f=$f * $i;

 print("The factorial : $f");

 break;

}

?>

/* File print program */

<?php

$f=fopen("f1",r) or exit("File does not exist");

while(!feof($f))

{

print(fgets($f)."\n");

}

fclose($f);

?>

Unix Programming Lab Record

70

Python Programs

STRINGS:-

string1="unixprogramming language"

print(string1[5:15])#programmin

print(type(string1))#<class 'str'>

string2=string1#copy of string1 to string2

print(string2)#unixprogramming language

str1=string2.replace("unix","linux")#replace unixto linux

print(str1)#linuxprogramming language

print(len(string1))#25

print(max(string1))#x

print(string1.capitalize())#Unix programming language

print(string1.title())#Unix Programming Language

print(string1.upper())#UNIX PROGRAMMING LANGUAGE

print(string1.lower())#unixprogramming language

print(string1.split())#['unix', 'programming', 'language']

print(string1*3)#unixprogramming languageunixprogramming languageunixprogramming language

print(string1+" mca")#unixprogramming language mca

Unix Programming Lab Record

71

LISTS:-

list1=[1,3,'a',1,'j',1]

print(list1[5])#j

list1.append(6)#adding element to list

print(list1)#['1', '3', 'a', '1', 'j', 6]

list2=list1.copy()#copy list1 to list2

print(list2)#['1', '3', 'a', '1', 'j', 6]

print(list1.count(1))#3

list1.extend(list2)#adding two lists

print(list1)#[1, 3, 'a', 1, 'j', 1, 6, 1, 3, 'a', 1, 'j', 1, 6]

print(list1.index('a'))#2

print(list1.pop())#6

list1.remove('j')#remove particular element

print(list1)#[1, 3, 'a', 1, 1, 6, 1, 3, 'a', 1, 'j', 1]

list1.reverse()#print in reverse order

print(list1)#[1, 'j', 1, 'a', 3, 1, 6, 1, 1, 'a', 3, 1]

list1.clear()#clear the list

print(list1)#[]

del list1#delete whole list with object also

Unix Programming Lab Record

72

TUPLES:-

tuple1=(1,2,3,1,2,'r','a',1)

print(tuple1[0:])#(1, 2, 3, 1, 2, 'r', 'a', 1)

print(tuple1.count(1))#3

print(tuple1.index('r'))#5

print(len(tuple1))#8

tuple2=(1,9,5,6,74,3,8,7)

print(tuple(sorted(tuple2)))#(1, 3, 5, 6, 7, 8, 9, 74)

print(min(tuple2))#1

Unix Programming Lab Record

73

SETS:-

s1={1,2,4,5,6,2,3,4,1,10,22,55}

print(s1)#{1, 2, 3, 4, 5, 6, 10, 22, 55}

s2=set()

s2.add(10)#ONLY ADDING FOR EMPTY SET

s2.add(20)

s2.add(90)

s2.add(10)

print(s2)#{10, 20, 90}

s3=[99,33,44,88,55]

s2.update(s3)#ADDING LIST TO SET

print(s2)#{33, 99, 10, 44, 20, 55, 88, 90}

s4=s2.copy()#COPY

print(s4)#{33, 99, 10, 44, 20, 55, 88, 90}

print(s4.pop())#REMOVE RANDOM ELEMENT

a={1,2,3,4,5,6,7,8,101,111}

Unix Programming Lab Record

74

a.remove(2)#REMOVE ONLY ONE ELEMENT

print(a)#{1, 3, 4, 5, 6, 7, 8, 101, 111}

a.discard(5)#REMOVE ELEMENT

a.discard(100)

print(a)#{1, 3, 4, 6, 7, 8, 101, 111}

print(s1|a)#{1, 2, 3, 4, 5, 6, 7, 8, 101, 10, 111, 22, 55}

print(s1&a)#{1, 3, 4, 6}

print(s1-a)#{2, 5, 10, 22, 55}

print(s1^a)#{2, 101, 7, 8, 5, 10, 111, 22, 55}

print(100 in a)#False

print(100 not in a)#True

sets={ x for x in range(10)}

print(sets)#{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Unix Programming Lab Record

75

Dictionary:-

dict={1:'rajesh',2:'gadde',3:"karthik",4:'shanth'}

print(dict)#{1: 'rajesh', 2: 'gadde', 3: 'karthik', 4: 'shanth'}

dict[5]='shiva'#dict[KEY]=VALUE

dict[6]='sai'#adding to dict

dict[7]='prasanth'

print(dict)#{1: 'rajesh', 2: 'gadde', 3: 'karthik', 4: 'shanth', 5: 'shiva', 6: 'sai', 7: 'prasanth'}

print(dict[4])#shanth

dict[2]='vamsi'#updating a dict

print(dict)#{1: 'rajesh', 2: 'vamsi', 3: 'karthik', 4: 'shanth', 5: 'shiva', 6: 'sai', 7: 'prasanth'}

del dict[7]#delitingitem from dict

print(dict)#{1: 'rajesh', 2: 'vamsi', 3: 'karthik', 4: 'shanth', 5: 'shiva', 6: 'sai'}

#d.clear()#clear the dictand shows empty dict

#del d#deletewhole object

print(len(dict))#6

#print(d.pop(3))#remove 3rd item

Unix Programming Lab Record

76

#print(d.popitem())#remove random item

print(dict.keys())#dict_keys([1, 2, 3, 4, 5, 6])

print(dict.values())#dict_values(['rajesh', 'vamsi', 'karthik', 'shanth', 'shiva', 'sai'])

print(dict.items())#dict_items([(1, 'rajesh'), (2, 'vamsi'), (3, 'karthik'), (4, 'shanth'), (5, 'shiva'), (6, 'sai')])

#print(d.copy())

print(dict.setdefault(1,'mahesh'))#1 is not there take to one thposition

print(dict)#{1: 'rajesh', 2: 'vamsi', 3: 'karthik', 4: 'shanth', 5: 'shiva', 6: 'sai'}

print(dict.setdefault(10,'mahesh'))#take value to 10th position

print(dict)#{1: 'rajesh', 2: 'vamsi', 3: 'karthik', 4: 'shanth', 5: 'shiva', 6: 'sai', 10: 'mahesh'}

d={100:'r',101:'l',102:'k',103:'s'}

dict.update(d)

print(dict)#{1: 'rajesh', 2: 'vamsi', 3: 'karthik', 4: 'shanth', 5: 'shiva', 6: 'sai', 10: 'mahesh', 100: 'r', 101: 'l', 102:

'k', 103: 's'}

Unix Programming Lab Record

77

Conditionals:-

s1=int(input("enter s1 marks:"))

s2=int(input("enter s2 marks:"))

s3=int(input("enter s3 marks:"))

avg=(s1+s2+s3)/3

if avg>90 and avg<=100:

print("A grade")

elifavg>80 and avg<=90:

print("B grade")

elifavg>70 and avg<=80:

print("C grade")

elifavg>60 and avg<=70:

print("D grade")

elifavg>40 and avg<=60:

print("E grade")

else:

print("fails in the exam")

""“ Output:-enter s1 marks:98

enter s2 marks:56

enter s3 marks:98

B grade"""

Unix Programming Lab Record

78

Loops:-

for x in range(5):

print("MCA")

y=1

""" OUTPUT:-

MCA

MCA

MCA

MCA

MCA"""

while y<=7:

print("second year")

y+=1

"""OUTPUT:-

second year

second year

second year

second year

second year

second year second year”””

Unix Programming Lab Record

79

Pre-definedFunctions:-

•Print()

•Count()

•Len()

•Index()

•Max()

•Min()

•Range()

•Update()

•Sorted() and etc.

Unix Programming Lab Record

80

User-defined functions:-

def fun1():

print("welcome to python")

def fun2():

print("It is very simple")

def fun3():

print("and very easy")

fun1()

fun2()

fun3()

Output:-

welcome to python

It is very simple

and very easy

Unix Programming Lab Record

81

Pre-defined Exception:-

try:

a=int(input(" enter a integer:"))

b=int(input("enter another integer:"))

c=a/b

print(c)

except Exception as e:

print("exception is:",e)

else:

print("excutesuccesfully")

finally:

print("thanks")

Output:-

enter a integer:8270

enter another integer:0

exception is: division by zero

thanks

Unix Programming Lab Record

82

User-defined Exception:-

try:

class AgeError(Exception):

def __init__(self,msg):

self.msg=msg

age=int(input("enter age: "))

if age<=18:

raise AgeError("your age below 18 years")

elifage>=60:

raise AgeError("your age above 60 years")

else:

print("your age between 18 and 60 years")

except Exception as e:

print(e)

else:

print("thanks giving information")

finally:

print("welcome.....")

